Immunity, Inflammation and Disease
Latest articles in this journal
Immunity, Inflammation and Disease, Volume 11; https://doi.org/10.1002/iid3.831
Abstract:
Acute pancreatitis (AP) is an inflammatory process unexpectedly occurring in the pancreas, imposing a substantial burden on healthcare systems. Herein, we aimed to clarify the mechanism of action of phospholipase D2 (PLD2) in cerulein-treated AR42J cells, affording valuable insights into the treatment of AP. The levels of PLD2, miR-5132-5p, inflammatory factors (interleukin [IL]-10, IL-6, and tumor necrosis factor-α), caspase-3 activity, and apoptosis-related proteins (Bax and Bcl-2) in cerulein-treated AR42J cells were detected using reverse transcription-quantitative polymerase chain, caspase-3 activity, and Western blot analysis. Protein levels of nuclear Factor erythroid 2-Related Factor 2 (Nrf2) and nuclear factor-k-gene binding (NF-κB) were detected by Western blot analysis. TargetScan predicted upstream microRNAs (miRNAs) of PLD2, and the interaction between miR-5132-5p and PLD2 was verified using a luciferase assay. In cerulein-treated AR42J cells, PLD2 levels were downregulated, while miR-5132-5p expression was upregulated. Overexpression of PLD2 attenuated the cerulein-mediated facilitatory effect on inflammation and apoptosis in AR42J cells by regulating the Nrf2/NFκB pathway. Luciferase reporter analysis revealed that miR-5132-5p targeted PLD2, and miR-5132-5p negatively regulated PLD2. Upregulation of miR-5132-5p expression exacerbated inflammation and apoptosis and reversed the protective effect of PLD2 overexpression on AP. PLD2 targeted by miR-5132-5p can attenuate cerulein-induced AP in AR42J cells via the Nrf2/NFκB pathway, providing therapeutic targets for patients with AP.
Immunity, Inflammation and Disease, Volume 11; https://doi.org/10.1002/iid3.879
Abstract:
Approximately 50% of cases with recurrent spontaneous abortion (RSA) have unexplained etiology. Aberrant expression of transmembrane and ubiquitin‐like domain containing 1 (TMUB1) is closely related to a series of diseases, including RSA. However, the function and underlying mechanism of TMUB1 in the occurrence of RSA has not been described. TMUB1 expression was detected in the placental villous tissues of 30 women with normal miscarriages and 12 women with RSA. The pregnant mice were injected intraperitoneally with lipopolysaccharide (LPS) to induce abortion. Human chorionic trophoblast cells were treated with LPS. Pathological analysis of placental tissues was performed by hematoxylin and eosin staining. TMUB1 was highly expressed in the placental villous tissues of RSA patients compared to the patients who underwent induced abortions. After LPS administration, the mice exhibited high embryo absorption and pathological alterations, as well as presented an increase in inflammation and apoptosis (the etiology of RSA induction) in placental tissues. Moreover, the upregulated expression of TMUB1 was also found in placental tissues of LPS‐induced mice, and further investigation showed that TMUB1 deficiency blocked embryo loss as well as inhibited apoptotic rate and inflammation after LPS activation. Furthermore, we found that the loss of TMUB1 suppressed the phosphorylation of IkappaB kinase (IKK) α/β and attenuated cytoplasmic‐nuclear translocation of nuclear factor‐κB (NF‐κB) p65 in LPS‐induced cells. Our results indicate that TMUB1 may involve in the modulation of apoptosis and NF‐κB pathway‐mediated inflammation in RSA. Therefore, TMUB1 may develop as a potential biomarker for RSA treatment.
Immunity, Inflammation and Disease, Volume 11; https://doi.org/10.1002/iid3.841
Abstract:
There is no clear explanation for the large variation in threshold levels among peanut‐allergic children. We hypothesized that diet composition can partly explain this variation in thresholds, as nutrients and foods influence the intestinal barrier function and microbiota. to explore the relationship between the threshold levels for peanut and nutritional intake and gut microbial composition in peanut‐allergic children. In this explorative cross‐sectional study the cumulative threshold levels for peanut were determined by oral food challenge tests. Data on nutrients and foods consumed were obtained from 3‐day food diaries. Microbial composition of faeces and saliva were determined by molecular microbiota detection technique. Multivariable linear regression analysis and multiple logistic regression were used to explore the associations, adjusted for energy and senitization. Sixty‐five children were included, of whom 32 (49%) (median age 50 months, IQR 28.0–96.5) had a positive oral food challenge. Significant positive associations were found between the intake of total carbohydrates, vitamin A and cumulative threshold levels for peanut, while significant negative associations were found for long‐chain polyunsaturated fatty acids, linoleic acid and omega‐6 fatty acids. No associations were found between threshold levels and microbial composition of faeces and saliva. However, a significant higher abundance of Proteobacteria and Bacteroidetes in saliva (p = 0.011 and 0.04, respectively) and of Proteobacteria in faeces (p = 0.003) were found in children with a positive peanut challenge compared to children with a negative peanut challenge. As a novel concept, this study showed that dietary composition is related to threshold levels for peanut.
Immunity, Inflammation and Disease, Volume 11; https://doi.org/10.1002/iid3.870
Abstract:
Our previous study reveals that proprotein convertase subtilisin/kexin type 9 (PCSK9) is positively related to inflammatory markers, T helper (Th)‐17 cells, and treatment response in ankylosing spondylitis (AS) patients. Subsequently, this study aimed to explore the effect of PCSK9 on Th cell differentiation and its potential molecular mechanism in AS. Serum PCSK9 was determined by enzyme‐linked immunosorbent assay in 20 AS patients and 20 healthy controls (HCs). Then naïve CD4+ T cells were isolated from AS patients and infected with PCSK9 overexpression or knockdown adenovirus followed by polarization assay. Afterward, PMA (an NF‐κB activator) was administrated. PCSK9 was increased in AS patients compared to HCs (p < .001), and it was positively related to Th1 cells (p = .050) and Th17 cells (p = .039) in AS patients. PCSK9 overexpression increased the CD4+IFN‐γ+ cells (p < .05), CD4+IL‐17A+ cells (p < .01), IFN‐γ (p < .01), and IL‐17A (p < .01), while it exhibited no effect on CD4+IL‐4+cells or IL‐4 (both p > .05); its knockdown displayed the opposite function on them. Moreover, PCSK9 overexpression upregulated the p‐NF‐κB p65/NF‐κB p65 (p < .01), while it had no effect on p‐ERK/ERK or p‐JNK/JNK (both p > .05); its knockdown decreased p‐NF‐κB p65/NF‐κB p65 (p < .01) and p‐JNK/JNK (p < .05). Then, PMA upregulates p‐NF‐κB p65/NF‐κB p65 (p < .001) and increased CD4+IFN‐γ+ cells, CD4+IL‐17A+ cells, IFN‐γ, and IL‐17A (all p < .01), also it alleviated the effect of PCSK9 knockdown on NF‐κB inhibition and Th cell differentiation (all p < .01). PCSK9 enhances Th1 and Th17 cell differentiation in an NF‐κB‐dependent manner in AS, while further validation is necessary.
Immunity, Inflammation and Disease, Volume 11; https://doi.org/10.1002/iid3.876
Abstract:
β‐Glucan from Lentinus edodes (LNT), an edible mushroom, possesses strong anticancer activity. However, the therapeutic effects of LNT during the occurrence and progression of breast cancer and their underlying molecular mechanisms have not been elucidated. Mouse mammary tumor virus‐polyoma middle tumor‐antigen (MMTV‐PyMT) transgenic mice were used as a breast cancer mouse model. Hematoxylin and eosin, immunohistochemical, and immunofluorescence staining were performed for histopathological analysis. Moreover, we developed an inflammatory cell model using tumor necrosis factor‐α (TNF‐α). Macrophage polarization was assessed using western blot analysis and immunofluorescence. Orphan nuclear receptor 77 (Nur77) and sequestosome‐1 (p62) were highly expressed and positively correlated with each other in breast cancer tissues. LNT significantly inhibited tumor growth, ameliorated inflammatory cell infiltration, and induced tumor cell apoptosis in PyMT transgenic mice. Moreover, LNT attenuated the ability of tumors to metastasize to lung tissue. Mechanistically, LNT treatment restrained macrophage polarization from M1 to M2 phenotype and promoted autophagic cell death by inhibiting Nur77 expression, AKT/mTOR signaling, and inflammatory signals in breast tumor cells. However, LNT did not exhibit a direct pro‐autophagic effect on tumor cell death, except for its inhibitory effect on Nur77 expression. LNT‐mediated autophagic tumor cell death depends on M1 macrophage polarization. In in vitro experiments, LNT inhibited the upregulation of p62, autophagy activation, and inflammatory signaling pathways in Nur77 cells. LNT inhibited macrophage M2 polarization and subsequently blocked the AKT/mTOR and inflammatory signaling axes in breast cancer cells, thereby promoting autophagic tumor cell death. Thus, LNT may be a promising therapeutic strategy for breast cancer.
Immunity, Inflammation and Disease, Volume 11; https://doi.org/10.1002/iid3.856
Abstract:
Vacuolar protein sorting (VPS) plays a crucial role in intracellular molecular transport between organelles. However, studies have indicated a correlation between VPSs and tumorigenesis and the development of several cancers. Nevertheless, the association between VPSs and hepatocellular carcinoma (HCC) remains unclear. By analyzing databases such as The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC), we investigated the differences in VPSs expression between normal tissue and HCC transcriptomes. Furthermore, we examined the relationship between VPSs expression and overall survival (OS) in patients with HCC. Univariate and multivariate Cox analyses were employed to assess the prognostic value of VPS72 as an independent factor, and the correlation between VPS72 and the tumor immune microenvironment was also analyzed. We observed significant overexpression of 28 VPSs in HCC tissues compared to normal tissues. The mRNA expression of VPSs displayed a negative correlation with OS, while exhibiting a positive correlation with tumor grade and stage. Additionally, both univariate and multivariate Cox analyses identified VPS72 as a potential independent risk factor for HCC prognosis. Overexpression of VPS72 demonstrated a positive correlation with various clinicopathological factors associated with poor prognosis, as well as the infiltration levels of immune cells. Therefore, our research shows that VPSs participate in HCC occurrence and development, especially VPS72, which may act as a potential target for HCC treatment and prognosis biomarker.
Immunity, Inflammation and Disease, Volume 11; https://doi.org/10.1002/iid3.864
Abstract:
The RING finger (RNF) proteins are a large group of ubiquitin ligases whose aberrant expression is often associated with disease progression. This study examines the function of RNF protein 182 (RNF182) in lung adenocarcinoma (LUAD) cells and its impact on p65 and programmed death ligand 1 (PDL1) regulation. Expression of RNF182, p65, and PDL1 in LUAD tissues and cells was measured using immunohistochemistry, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and/or western blot (WB) assays. LUAD cells were induced to overexpress RNF182 and p65, followed by cell counting kit-8, colony formation, Transwell, and flow cytometry assays to evaluate the cells' malignant phenotype. Coimmunoprecipitation and WB assays were used to verify RNF182's effect on p65 ubiquitination. Chromatin immunoprecipitation-qPCR and luciferase assays were used to analyze p65's transcriptional regulation of PDL1. Coculture of LUAD with CD8+ cytotoxic T cells was performed to detect lactate dehydrogenase release and interferon-γ and interleukin-2 concentrations. LUAD cells were implanted in mice to analyze tumorigenicity. RNF182 was poorly expressed, while p65 and PDL1 were highly expressed in LUAD tissues and cells. RNF182 overexpression suppressed the malignant properties of LUAD cells, and it promoted p65 ubiquitination and protein degradation. p65 activated PDL1 transcription. Overexpression of RNF182 suppressed the PDL1 expression, increased the cytotoxicity in LUAD cells cocultured with CD8+ T cells, and suppressed the tumorigenesis of cancer cells in vivo. However, these tumor-suppressive effects of RNF182 on LUAD cells were blocked by p65 restoration. This research demonstrates that RNF182 induces p65 ubiquitination to suppress PDL1 transcription and immunosuppression in LUAD.
Immunity, Inflammation and Disease, Volume 11; https://doi.org/10.1002/iid3.860
Abstract:
Sepsis-induced myocardial dysfunction (SIMD) is the leading cause of death in patients with sepsis in the intensive care units. The main manifestations of SIMD are systolic and diastolic dysfunctions of the myocardium. Despite our initial understanding of the SIMD over the past three decades, the incidence and mortality of SIMD remain high. This may be attributed to the large degree of heterogeneity among the initiating factors, disease processes, and host states involved in SIMD. Previously, organ dysfunction caused by sepsis was thought to be an impairment brought about by an excessive inflammatory response. However, many recent studies have shown that SIMD is a consequence of a combination of factors shaped by the inflammatory responses between the pathogen and the host. In this article, we review the mechanisms of the inflammatory responses and potential novel therapeutic strategies in SIMD.
Immunity, Inflammation and Disease, Volume 11; https://doi.org/10.1002/iid3.854
Abstract:
Our previous research developed a novel tuberculosis (TB) DNA vaccine ag85a/b that showed a significant therapeutic effect on the mouse tuberculosis model by intramuscular injection (IM) and electroporation (EP). However, the action mechanisms between these two vaccine immunization methods remain unclear. In a previous study, 96 Mycobacterium tuberculosis (MTB) H37 Rv-infected BALB/c mice were treated with phosphate-buffered saline, 10, 50, 100, and 200 μg ag85a/b DNA vaccine delivered by IM and EP three times at 2-week intervals, respectively. In this study, peripheral blood mononuclear cells (PBMCs) from three mice in each group were isolated to extract total RNA. The gene expression profiles were analyzed using gene microarray technology to obtain differentially expressed (DE) genes. Finally, DE genes were validated by real-time reverse transcription-quantitive polymerase chain reaction and the GEO database. After MTB infection, most of the upregulated DE genes were related to the digestion and absorption of nutrients or neuroendocrine (such as Iapp, Scg2, Chga, Amy2a5), and most of the downregulated DE genes were related to cellular structural and functional proteins, especially the structure and function proteins of the alveolar epithelial cell (such as Sftpc, Sftpd, Pdpn). Most of the abnormally upregulated or downregulated DE genes in the TB model group were recovered in the 100 and 200 μg ag85a/b DNA IM groups and four DNA EP groups. The pancreatic secretion pathway downregulated and the Rap1 signal pathway upregulated had particularly significant changes during the immunotherapy of the ag85a/b DNA vaccine on the mouse TB model. The action targets and mechanisms of IM and EP are highly consistent. Tuberculosis infection causes rapid catabolism and slow anabolism in mice. For the first time, we found that the effective dose of the ag85a/b DNA vaccine immunized whether by IM or EP could significantly up-regulate immune-related pathways and recover the metabolic disorder and the injury caused by MTB.
Immunity, Inflammation and Disease, Volume 11; https://doi.org/10.1002/iid3.875
Abstract:
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic with serious complications. After coronavirus disease 2019 (COVID-19), several post-acute COVID-19 syndromes (PACSs) and long-COVID sequels were reported. PACSs involve many organs, including the nervous, gustatory, and immune systems. One of the PACSs after SARS-CoV-2 infection and vaccination is Guillain-Barré syndrome (GBS). The incidence rate of GBS after SARS-CoV-2 infection or vaccination is low. However, the high prevalence of COVID-19 and severe complications of GBS, for example, autonomic dysfunction and respiratory failure, highlight the importance of post-COVID-19 GBS. It is while patients with simultaneous COVID-19 and GBS seem to have higher admission rates to the intensive care unit, and demyelination is more aggressive in post-COVID-19 GBS patients. SARS-CoV-2 can trigger GBS via several pathways like direct neurotropism and neurovirulence, microvascular dysfunction and oxidative stress, immune system disruption, molecular mimicry, and autoantibody production. Although there are few molecular studies on the molecular and cellular mechanisms of GBS occurrence after SARS-CoV-2 infection and vaccination, we aimed to discuss the possible pathomechanism of post-COVID-19 GBS by gathering the most recent molecular evidence.