Molecules

Journal Information
EISSN: 14203049
Published by: MDPI
Total articles ≅ 42,751

Latest articles in this journal

Published: 5 December 2022
by MDPI
Journal: Molecules
Abstract:
A new series of 1,2,3-triazole derivatives 5a–f based on benzothiazole were synthesized by the 1,3-dipolar cycloaddition reaction of S-propargyl mercaptobenzothiazole and α-halo ester/amide in moderate to good yields (47–75%). The structure of all products was characterized by 1H NMR, 13C NMR, and CHN elemental data. This protocol is easy and green and proceeds under mild and green reaction conditions with available starting materials. The structural and electronic analysis and 1H and 13C chemical shifts of the characterized structure of 5e were also calculated by applying the B3LYP/6-31 + G(d, p) level of density functional theory (DFT) method. In the final section, all the synthesized compounds were evaluated for their anti-inflammatory activity by biochemical COX-2 inhibition, antifungal inhibition with CYP51, anti-tuberculosis target protein ENR, DPRE1, pks13, and Thymidylate kinase by molecular docking studies. The ADMET analysis of the molecules 5a–f revealed that 5d and 5a are the most-promising drug-like molecules out of the six synthesized molecules.
Published: 5 December 2022
by MDPI
Journal: Molecules
Abstract:
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of infection worldwide. Clove oil’s ability to inhibit the growth of MRSA was studied through in vitro and in vivo studies. The phytochemical components of clove oil were determined through gas chromatography-mass spectrometry (GC-MS) analysis. The antibacterial effects of clove oil and its interaction with imipenem were determined by studying MIC, MBC, and FIC indices in vitro. The in vivo wound-healing effect of the clove oil and infection control were determined using excision wound model rats. The GC-MS analysis of clove oil revealed the presence of 16 volatile compounds. Clove oil showed a good antibacterial effect in vitro but no interaction was observed with imipenem. Clove bud oil alone or in combination with imipenem healed wounds faster and reduced the microbial load in wounds. The findings of this study confirmed the antibacterial activity of clove oil in vitro and in vivo and demonstrated its interaction with imipenem.
Published: 5 December 2022
by MDPI
Journal: Molecules
Abstract:
In this research, we studied, in detail, the behavior of common PNIPAM microgels, obtained through surfactant-free precipitation polymerization, in a number of organic solvents. We showed that many of the selected solvents serve as good solvents for the PNIPAM microgels and that the size and architecture of the microgels depend on the solvent chosen. Expanding the range of solvents used for PNIPAM microgel incubation greatly enhances the possible routes for microparticle functionalization and modification, as well as the encapsulation of water-insoluble species. In this demonstration, we successfully encapsulated water-insoluble Sudan III dye in PNIPAM microgels and prepared the aqueous dispersions of such composite-colored microparticles.
Published: 5 December 2022
by MDPI
Journal: Molecules
Abstract:
A sequential Rh(III)-catalyzed C-H activation/annulation of N-hydroxybenzamides with propargylic acetates leading to the formation of NH-free isoquinolones is described. This reaction proceeds through a sequential C-H activation/alkyne insertion/intramolecular annulation/N-O bond cleavage procedure, affording a broad spectrum of products with diverse substituents in moderate-to-excellent yields. Notably, this protocol features the simultaneous formation of two new C-C/C-N bonds and one heterocycle in one pot with the release of water as the sole byproduct.
Published: 5 December 2022
by MDPI
Journal: Molecules
Abstract:
The acidic tumor microenvironment (TME) is unfriendly to the activity and function of immune cells in the TME. Here, we report inorganic nanozymes (i.e., SnSe NSs) that mimic the catalytic activity of lactate dehydrogenase to degrade lactate to pyruvate, contributing to the metabolic treatment of tumors. As found in this study, SnSe NSs successfully decreased lactate levels in cells and tumors, as well as reduced tumor acidity. This is associated with activation of the immune response of T cells, thus alleviating the immunosuppressive environment of the TME. More importantly, the nanozyme successfully inhibited tumor growth in mutilate mouse tumor models. Thus, SnSe NSs show a promising result in lactate depletion and tumor suppression, which exemplifies its potential strategy in targeting lactate for metabolic therapy.
Published: 5 December 2022
by MDPI
Journal: Molecules
Abstract:
Plant extracts may represent an ecofriendly alternative to chemical fungicides to limit aflatoxin B1 (AFB1) contamination of foods and feeds. Mate (Ilex paraguariensis), rosemary (Romarinus officinalis) and green tea (Camellia sinensis) are well known for their beneficial properties, which are mainly related to their richness in bioactive phenolic compounds. AFB1 production is inhibited, with varying efficiency, by acetone/water extracts from these three plants. At 0.45 µg dry matter (DM)/mL of culture medium, mate and green tea extracts were able to completely inhibit AFB1 production in Aspergillus flavus, and rosemary extract completely blocked AFB1 biosynthesis at 3.6 µg DM/mL of culture medium. The anti-AFB1 capacity of the extracts correlated strongly with their phenolic content, but, surprisingly, no such correlation was evident with their antioxidative ability, which is consistent with the ineffectiveness of these extracts against fungal catalase activity. Anti-AFB1 activity correlated more strongly with the radical scavenging capacity of the extracts. This is consistent with the modulation of SOD induced by mate and green tea in Aspergillus flavus. Finally, rutin, a phenolic compound present in the three plants tested in this work, was shown to inhibit AFB1 synthesis and may be responsible for the anti-mycotoxin effect reported herein.
Published: 5 December 2022
by MDPI
Journal: Molecules
Abstract:
Six new polyoxygenated terpenoids, podovirosanes A–F (1–6), and two known polyketides (7 and 8) were isolated from the roots of F. virosa. Their structures, along with absolute configurations, were deduced using spectroscopic analysis as well as computational calculations, including TDDFT calculation of ECD spectra and GIAO NMR calculations combined with DP4+ probability analysis. Compounds 2, 3, 5, and 8 were found to reduce the phosphorylation levels of NF-κB p65 in SARS-CoV-2 pseudovirus-stimulated PMA-differentiated THP-1 cells.
Published: 4 December 2022
by MDPI
Journal: Molecules
Abstract:
Effective methods of detection and removal of iodide ions (I) from radioactive wastewater are urgently needed and developing them remains a great challenge. In this work, an Ag+ decorated stable nano-MOF UiO-66-(COOH)2 was developed for the I to simultaneously capture and sense in aqueous solution. Due to the uncoordinated carboxylate groups on the UiO-66-(COOH)2 framework, Ag+ was successfully incorporated into the MOF and enhanced the intrinsic fluorescence of MOF. After adding iodide ions, Ag+ would be produced, following the formation of AgI. As a result, Ag+@UiO-66-(COOH)2 can be utilized for the removal of I in aqueous solution, even in the presence of other common ionic ions (NO2, NO3, F, SO42). The removal capacity as high as 235.5 mg/g was calculated by Langmuir model; moreover, the fluorescence of Ag+@UiO-66-(COOH)2 gradually decreases with the deposition of AgI, which can be quantitatively depicted by a linear equation. The limit of detection toward I is calculated to be 0.58 ppm.
Published: 4 December 2022
by MDPI
Journal: Molecules
Abstract:
Organometallic approaches are of ongoing interest for the development of novel functional 99mTc radiopharmaceuticals, while the basic organotechnetium chemistry seems frequently to be little explored. Thus, structural and reactivity studies with the long-lived isotope 99Tc are of permanent interest as the foundation for further progress in the related radiopharmaceutical research with this artificial element. Particularly the knowledge about the organometallic chemistry of high-valent technetium compounds is scarcely developed. Here, phenylimido complexes of technetium(V) with different isocyanides are introduced. They have been synthesized by ligand-exchange procedures starting from [Tc(NPh)Cl3(PPh3)2]. Different reactivity patterns and products have been obtained depending on the steric and electronic properties of the individual ligands. This involves the formation of 1:1 and 1:2 exchange products of Tc(V) with the general formulae [Tc(NPh)Cl3(PPh3)(isocyanide)], cis- or trans-[Tc(NPh)Cl3(isocyanide)2], but also the reduction in the metal and the formation of cationic technetium(I) complex of the formula [Tc(isocyanide)6]+ when p-fluorophenyl isocyanide is used. The products have been studied by single-crystal X-ray diffraction and spectroscopic methods, including IR and multinuclear NMR spectroscopy. DFT calculations on the different isocyanides allow the prediction of their reactivity towards electron-rich and electron-deficient metal centers by means of the empirical SADAP parameter, which has been derived from the potential energy surface of the electron density on their potentially coordinating carbon atoms.
Published: 4 December 2022
by MDPI
Journal: Molecules
Abstract:
The formation of inherently chiral calix[4]arenes by the intramolecular cyclization approach suffers from a limited number of suitable substrates for these reactions. Here, we report an easy way to prepare one class of such compounds: calixquinolines, which can be obtained by the reaction of aldehydes with easily accessible aminocalix[4]arenes in acidic conditions (Doebner–Miller reaction). The synthetic procedure represents a very straightforward approach to the inherently chiral macrocyclic systems. The complexation studies revealed the ability of these compounds to complex quaternary ammonium salts with different stoichiometries depending on the guest molecules. At the same time, the ability of enantioselective complexation of chiral N-methylammonium salts was demonstrated.
Back to Top Top