Science Translational Medicine

Journal Information
ISSN: 19466234
Total articles ≅ 6,170

Latest articles in this journal

Jiadi Lv, Yabo Zhou, Nannan Zhou, Zhenfeng Wang, Jie Chen, Haoran Chen, Dianheng Wang, Li Zhou, Keke Wei, Huafeng Zhang, et al.
Science Translational Medicine, Volume 15; https://doi.org/10.1126/scitranslmed.abq6024

Abstract:
Weak immunogenicity of tumor cells is a root cause for the ultimate failure of immunosurveillance and immunotherapy. Although tumor evolution can be shaped by immunoediting toward a less immunogenic phenotype, mechanisms governing the initial immunogenicity of primordial tumor cells or original cancer stem cells remain obscure. Here, using a single tumor-repopulating cell (TRC) to form tumors in immunodeficient or immunocompetent mice, we demonstrated that immunogenic heterogeneity is an inherent trait of tumorigenic cells defined by the activation status of signal transducer and activator of transcription 1 (STAT1) protein in the absence of immune pressure. Subsequent investigation identified that the RNA binding protein cold shock domain–containing protein E1 (CSDE1) can promote STAT1 dephosphorylation by stabilizing T cell protein tyrosine phosphatase (TCPTP). A methyltransferase SET and MYN domain–containing 3 (SMYD3) was further identified to mediate H3K4 trimethylation of CSDE1 locus, which was under the regulation of mechanotransduction by cell-matrix and cell-cell contacts. Thus, owing to the differential epigenetic modification and subsequent differential expression of CSDE1, nascent tumorigenic cells may exhibit either a high or low immunogenicity. This identified SMYD3-CSDE1 pathway represents a potential prognostic marker for cancer immunotherapy effectiveness that requires further investigation.
Jeffrey D. Kearns, , Ufuk Olgac, Marie Fichter, Brigitte Christen, Tina Rubic-Schneider, Stephan Koepke, Benjamin Cochin de Billy, David Ledieu, Cedric Andre, et al.
Science Translational Medicine, Volume 15; https://doi.org/10.1126/scitranslmed.abq5068

Abstract:
Immunogenicity against intravitreally administered brolucizumab has been previously described and associated with cases of severe intraocular inflammation, including retinal vasculitis/retinal vascular occlusion (RV/RO). The presence of antidrug antibodies (ADAs) in these patients led to the initial hypothesis that immune complexes could be key mediators. Although the formation of ADAs and immune complexes may be a prerequisite, other factors likely contribute to some patients having RV/RO, whereas the vast majority do not. To identify and characterize the mechanistic drivers underlying the immunogenicity of brolucizumab and the consequence of subsequent ADA-induced immune complex formation, a translational approach was performed to bridge physicochemical characterization, structural modeling, sequence analysis, immunological assays, and a quantitative systems pharmacology model that mimics physiological conditions within the eye. This approach revealed that multiple factors contributed to the increased immunogenic potential of brolucizumab, including a linear epitope shared with bacteria, non-natural surfaces due to the single-chain variable fragment format, and non-native drug species that may form over prolonged time in the eye. Consideration of intraocular drug pharmacology and disease state in a quantitative systems pharmacology model suggested that immune complexes could form at immunologically relevant concentrations modulated by dose intensity. Assays using circulating immune cells from treated patients or treatment-naïve healthy volunteers revealed the capacity of immune complexes to trigger cellular responses such as enhanced antigen presentation, platelet aggregation, endothelial cell activation, and cytokine release. Together, these studies informed a mechanistic understanding of the clinically observed immunogenicity of brolucizumab and associated cases of RV/RO.
, Daniel Margerie, Christian Asbrand, Markus Rehberg, , Inoncent Agueusop, Daniel Klemmer, Danping Ding-Pfennigdorff, Uwe Schwahn, Markus Dudek, et al.
Science Translational Medicine, Volume 15; https://doi.org/10.1126/scitranslmed.abq4419

Abstract:
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases affecting primarily the joints. Despite successful therapies including antibodies against tumor necrosis factor (TNF) and interleukin-6 (IL-6) receptor, only 20 to 30% of patients experience remission. We studied whether inhibiting both TNF and IL-6 would result in improved efficacy. Using backtranslation from single-cell RNA sequencing (scRNA-seq) data from individuals with RA, we hypothesized that TNF and IL-6 act synergistically on fibroblast-like synoviocytes (FLS) and T cells. Coculture of FLS from individuals with RA and T cells supported this hypothesis, revealing effects on both disease-driving pathways and biomarkers. Combining anti-TNF and anti–IL-6 antibodies in collagen-induced arthritis (CIA) mouse models resulted in sustained long-term remission, improved histology, and effects on bone remodeling pathways. These promising data initiated the development of an anti–TNF/IL-6 bispecific nanobody compound 1, with similar potencies against TNF and IL-6. We observed additive efficacy of compound 1 in a FLS/T cell coculture affecting arthritis and T helper 17 (T H 17) pathways. This nanobody compound transcript signature inversely overlapped with described RA endotypes, indicating a potential efficacy in a broader patient population. In summary, we showed superiority of a bispecific anti–TNF/IL-6 nanobody compound or combination treatment over monospecific treatments in both in vitro and in vivo models. We anticipate improved efficacy in upcoming clinical studies.
Anette C. Karle, Matthias B. Wrobel, Stephan Koepke, Michael Gutknecht, Sascha Gottlieb, Brigitte Christen, Tina Rubic-Schneider, Ingrid Pruimboom-Brees, Xavier Charles Leber, Meike Scharenberg, et al.
Science Translational Medicine, Volume 15; https://doi.org/10.1126/scitranslmed.abq5241

Abstract:
In October 2019, Novartis launched brolucizumab, a single-chain variable fragment molecule targeting vascular endothelial growth factor A, for the treatment of neovascular age-related macular degeneration. In 2020, rare cases of retinal vasculitis and/or retinal vascular occlusion (RV/RO) were reported, often during the first few months after treatment initiation, consistent with a possible immunologic pathobiology. This finding was inconsistent with preclinical studies in cynomolgus monkeys that demonstrated no drug-related intraocular inflammation, or RV/RO, despite the presence of preexisting and treatment-emergent antidrug antibodies (ADAs) in some animals. In this study, the immune response against brolucizumab in humans was assessed using samples from clinical trials and clinical practice. In the brolucizumab-naïve population, anti-brolucizumab ADA responses were detected before any treatment, which was supported by the finding that healthy donors can harbor brolucizumab-specific B cells. This suggested prior exposure of the immune system to proteins with structural similarity. Experiments on samples showed that naïve and brolucizumab-treated ADA-positive patients developed a class-switched, high-affinity immune response, with several linear epitopes being recognized by ADAs. Only patients with RV/RO showed a meaningful T cell response upon recall with brolucizumab. Further studies in cynomolgus monkeys preimmunized against brolucizumab with adjuvant followed by intravitreal brolucizumab challenge demonstrated that high ADA titers were required to generate ocular inflammation and vasculitis/vascular thrombosis, comparable to RV/RO in humans. Immunogenicity therefore seems to be a prerequisite to develop RV/RO. However, because only 2.1% of patients with ADA develop RV/RO, additional factors must play a role in the development of RV/RO.
, , , Tazzy Cole, Sarah Mendelowitz, Kristin Nuckols, Cameron Hohimer, , ,
Science Translational Medicine, Volume 15; https://doi.org/10.1126/scitranslmed.add1504

Abstract:
Despite promising results in the rehabilitation field, it remains unclear whether upper limb robotic wearables, e.g., for people with physical impairments resulting from neurodegenerative disease, can be made portable and suitable for everyday use. We present a lightweight, fully portable, textile-based, soft inflatable wearable robot for shoulder elevation assistance that provides dynamic active support to the upper limbs. The technology is mechanically transparent when unpowered, can quantitatively assess free movement of the user, and adds only 150 grams of weight to each upper limb. In 10 individuals with amyotrophic lateral sclerosis (ALS) with different degrees of neuromuscular impairment, we demonstrated immediate improvement in the active range of motion and compensation for continuing physical deterioration in two individuals with ALS over 6 months. Along with improvements in movement, we show that this robotic wearable can improve functional activity without any training, restoring performance of basic activities of daily living. In addition, a reduction in shoulder muscle activity and perceived muscular exertion, coupled with increased endurance for holding objects, highlight the potential of this device to mitigate the impact of muscular fatigue for patients with ALS. These results represent a further step toward everyday use of assistive, soft, robotic wearables for the upper limbs.
T. Jessie Ge, , Kevin Mintz, Walter G. Park, , ,
Science Translational Medicine, Volume 15; https://doi.org/10.1126/scitranslmed.abk3489

Abstract:
Smart toilets are a key tool for enabling precision health monitoring in the home, but such passive monitoring has ethical considerations.
, Wen Du, , Lina Sui, , Irwin J. Kurland, , , , Rafael de Cabo, et al.
Science Translational Medicine, Volume 15; https://doi.org/10.1126/scitranslmed.abq4126

Abstract:
Sulfonylureas (SUs) are effective and affordable antidiabetic drugs. However, chronic use leads to secondary failure, limiting their utilization. Here, we identify cytochrome b5 reductase 3 (Cyb5r3) down-regulation as a mechanism of secondary SU failure and successfully reverse it. Chronic exposure to SU lowered Cyb5r3 abundance and reduced islet glucose utilization in mice in vivo and in ex vivo murine islets. Cyb5r3 β cell–specific knockout mice phenocopied SU failure. Cyb5r3 engaged in a glucose-dependent interaction that stabilizes glucokinase (Gck) to maintain glucose utilization. Hence, Gck activators can circumvent Cyb5r3-dependent SU failure. A Cyb5r3 activator rescued secondary SU failure in mice in vivo and restored insulin secretion in ex vivo human islets. We conclude that Cyb5r3 is a key factor in the secondary failure to SU and a potential target for its prevention, which might rehabilitate SU use in diabetes.
Maureen Ty, Shenghuan Sun, Perri C. Callaway, John Rek, Kathleen D. Press, Kattria van der Ploeg, Jason Nideffer, , Sandy Klemm, , et al.
Science Translational Medicine, Volume 15; https://doi.org/10.1126/scitranslmed.add9012

Abstract:
Natural killer (NK) cells likely play an important role in immunity to malaria, but the effect of repeated malaria on NK cell responses remains unclear. Here, we comprehensively profiled the NK cell response in a cohort of 264 Ugandan children. Repeated malaria exposure was associated with expansion of an atypical, CD56 neg population of NK cells that differed transcriptionally, epigenetically, and phenotypically from CD56 dim NK cells, including decreased expression of PLZF and the Fc receptor γ-chain, increased histone methylation, and increased protein expression of LAG-3, KIR, and LILRB1. CD56 neg NK cells were highly functional and displayed greater antibody-dependent cellular cytotoxicity than CD56 dim NK cells. Higher frequencies of CD56 neg NK cells were associated with protection against symptomatic malaria and high parasite densities. After marked reductions in malaria transmission, frequencies of these cells rapidly declined, suggesting that continuous exposure to Plasmodium falciparum is required to maintain this modified, adaptive-like NK cell subset.
Subhajit Ghosh, , , , Sukrutha Thotala, Ekaterina Tikhonova, Natalia Miheecheva, Felix Frenkel, , , et al.
Science Translational Medicine, Volume 15; https://doi.org/10.1126/scitranslmed.abn6758

Abstract:
Severe and prolonged lymphopenia frequently occurs in patients with glioblastoma after standard chemoradiotherapy and has been associated with worse survival, but its underlying biological mechanism is not well understood. To address this, we performed a correlative study in which we collected and analyzed peripheral blood of patients with glioblastoma ( n = 20) receiving chemoradiotherapy using genomic and immune monitoring technologies. RNA sequencing analysis of the peripheral blood mononuclear cells (PBMC) showed an elevated concentration of myeloid-derived suppressor cell (MDSC) regulatory genes in patients with lymphopenia when compared with patients without lymphopenia after chemoradiotherapy. Additional analysis including flow cytometry and single-cell RNA sequencing further confirmed increased numbers of circulating MDSC in patients with lymphopenia when compared with patients without lymphopenia after chemoradiotherapy. Preclinical murine models were also established and demonstrated a causal relationship between radiation-induced MDSC and systemic lymphopenia using transfusion and depletion experiments. Pharmacological inhibition of MDSC using an arginase-1 inhibitor (CB1158) or phosphodiesterase-5 inhibitor (tadalafil) during radiation therapy (RT) successfully abrogated radiation-induced lymphopenia and improved survival in the preclinical models. CB1158 and tadalafil are promising drugs in reducing radiation-induced lymphopenia in patients with glioblastoma. These results demonstrate the promise of using these classes of drugs to reduce treatment-related lymphopenia and immunosuppression.
Robert M. Califf,
Science Translational Medicine, Volume 15; https://doi.org/10.1126/scitranslmed.adg2970

Abstract:
Adequate and well-controlled clinical trials remain critical tools for helping to bring benefit to patients in medical need.
Back to Top Top