Laplace Transform of nested analytic functions via Bell’s polynomials

Bell's polynomials have been used in many different fields, ranging from number theory to operators theory. In this article we show a method to compute the Laplace Transform (LT) of nested analytic functions. To this aim, we provide a table of the first few values of the complete Bell's polynomials, which are then used to evaluate the LT of composite exponential functions. Furthermore a code for approximating the Laplace Transform of general analytic composite functions is created and presented. A graphical verification of the proposed technique is illustrated in the last section.
Funding Information
  • No support by our institutions

This publication has 8 references indexed in Scilit: