Journal Perspektif

-
26 articles
Page of 3
Articles per Page
by
Suminar Diyah Nugraheni, Mastur Mastur
Published: 29 December 2017
Perspektif, Volume 16; doi:10.21082/psp.v16n2.2017.69-79

Abstract:ABSTRAK Bioetanol merupakan salah satu bahan bakar alternatif yang strategis untuk dikembangkan. Salah satu substrat yang menjanjikan untuk digunakan adalah molase. Molase merupakan hasil samping industri gula kristal tebu yang masih mengandung gula yaitu sekitar 45-54,6%. Bioetanol dari molase tebu berpotensi untuk dikembangkan karena sangat menguntungkan, pasokan cukup besar, tersedianya teknologi proses, serta tidak bersaing dengan pangan. Tulisan ini mengulas hasil-hasil penelitian dan implikasinya tentang bahan baku, proses, lingkungan yang berpengaruh serta strategi untuk meningkatkan produktivitas bioetanol dari molase tebu melalui rekayasa proses fermentasi. Pada pembuatan etanol, fermentasi merupakan proses yang memegang peranan penting. Pengaturan lingkungan fermentasi seperti suhu, pH, dan tekanan berpengaruh terhadap bioproses dalam fermentasi. Begitu pula penambahan bahan suplemen seperti gula, garam, dan ion logam menurut jenis dan konsentrasi yang tepat juga dapat mengoptimalkan proses fermentasi. Selain pengelolaan lingkungan dan penambahan bahan suplemen, strategi untuk peningkatan produktivitas bioetanol dari molase dapat dilakukan dengan: 1) penggunaan mikrobia selain Saccharomyces cerevisiae; 2) pretreatment; dan 3) metode fermentasi kontinyu. Penggunaan mikrobia selain Saccharomyces cerevisiae, seperti Zymomonas mobilis dapat meningkatkan produktivitas etanol hingga 55,8 g/L atau 27,9% dari total gula reduksi. Perlakuan pretreatment dapat meningkatkan produktivitas mikrobia dalam mengkonversi gula menjadi etanol, sedangkan penggunaan metode fermentasi secara kontinyu dapat meningkatkan produktivitas sebesar + 4.75 g/L/jam. ABSTRACT Bioethanol is one of strategic alternative fuel to develop. One of substrate that promises to be used is molasses. Molasses is by-product of sugar industry which contain of sugar about 45-54,6%. Bioethanol from sugarcane molase is necessary to develope because it is very profitable, large supply, availability technology, and no-competion to food. This paper was aimed to reviews some research results and their implications on raw materials, processes, advanced environments and strategies to increas bioethanol productivity of molasses through the fermentation process engineering. In the manufacture of ethanol, fermentation is an important holding process. In ethanol production, fermentation plays an important role. Fermentation environments arragement such as temperature, pH, and pressure can effect on bioprocess of fermentation. Similarly, the addition of supplemental ingredients such as sugar, salt, and metal ions by appropriate type and concentration can also optimize the fermentation process. In addition to environmental arrangement and supplemental adding, strategies to improve bioethanol productivity of molasses can be accomplished by 1) the use of microbes other than Saccharomyces cerevisiae; 2) pretreatment; and 3) continuous fermentation method. The use of microbes other than Saccharomyces cerevisiae, such as Zymomonas mobilis can increase ethanol productivity up to 55.8 g / L or 27.9% of total sugar reduction. Pretreatment can increase microbial productivity in converting sugar to ethanol, while continuous use of fermentation method can increase productivity by + 4.75 g / L / hr.
Siswanto, Sumanto, Deciyanto Soetopo
Published: 21 June 2017
Perspektif, Volume 15; doi:10.21082/psp.v15n2.2016.110-123

Abstract:AbstrakUret atau lundi merupakan hama endemis di berbagai wilayah tebu di Indonesia, terutama pada lahan kering dengan kandungan tanah dominan berpasir. Akibat serangan uret pada pertanaman tebu sering menyebabkan kehilangan hasil gula cukup besar, yakni mampu menurunkan hasil gula hingga 50 % per ha. Di Indonesia tercatat ada 30 spesies uret, dan empat genera di antaranya berpotensi sebagai hama tebu yaitu Lepidiota, Leucopholis, Phyllophaga dan Apogonia, dan spesies Lepidiota stigma paling dominan di berbagai wilayah pengembangan tebu yang menghadapi masalah uret. Hampir semua Negara produsen gula tebu mengalami kendala serangan uret dalam usahatani tebunya, tetapi genus dan spesies uret yang menyerang umumnya berbeda di setiap Negara. Strategi pengendalian uret di berbagai negara, sebagaimana halnya pengendalian hama dan penyakit saat ini lebih mengarah pada keamanan lingkungan dan kesehatan, yakni mengusahakan seminim mungkin penggunaan insektisida kimiawi sintetis dengan memadukan berbagai teknik pengendalian yang efisien, efektif dan kompatibel. Karena itu berbagai kegiatan penelitian dan pengendalian uret difokuskan pada pengembangan varietas toleran, pemanfaatan musuh alami, tindakan kultur teknis, serta cara mekanis dan fisik, yang kompatibel satu sama lain melalui konsep Pengendalian Hama Terpadu (PHT). Hasil penelitian penting terkait, antara lain:(1) Klon tebu toleran serangan uret di Indonesia PS862 dan Kenthung (khususnya L. stigma:), di Philipina klon CP29116, di Thailand, varieties Uthong 3 dan K 88-92, (2) Entomophatogen serangga potensial pengendali uret: jamur Metharizium anisopliae, Beauveria bassiana, nematode Steinernema sp. Implementasi strategi pengendalian uret ramah lingkungan mendukung program pertanian berkelanjutan akan efektif bila diselaraskan dengan karakter biologi hama, sarana prasarana pengembangan perbenihan dan pengendali hayati, cukup memadainya pemahaman tentang pengendalian hama terpadu baik petani maupun para pengambil kebijakan terkait usaha tani tebu.Kata Kunci : Tebu, uret, pengendalian, pertanian berkelanjutan White grubs are endemic pest in sugarcane plantation of Indonesia, mainly on the sandy loam dry land. The pest attack would cause up to 50% loss of yield in a ha. In Indonesia there are 30 species of grubs related to sugarcane plantation, while four of them dominantly are Lepidiota, Leucopholis, Phyllophaga dan Apogonia, but the species of Lepidiota stigma is the most dominant in the plantation which usually have severe problem on grubs infestation. Most of sugarcane producing countries are undergone the grubs problem in their plantation though in different genus or species. In the decade, the grubs control to be developed in some countries are directing to friendly environment strategy supporting sustainable agricultural development, by minimizing the use of chemical insecticides. Therefore research and development for the grubs control in Indonesia are also focusing on these strategy such as the development of tolerant varieties/klones,the use of natural enemies, cultivation methods, as well as mechanize and physical control methodes. Research results showed (1) PS862 and Kenthung klones are tolerant to L. stigma, (2) Entomophatogenic agents such as Metharizium anisopliae, Beauveria bassiana, Steinernema sp. To implement the strategy of friendly environment control supporting sustainable agricultural program would be effective by understanding the biological character of grubs, development infrastructure for superior seeds and biological control agents, empowering farmer and policy makers concerning sugarcane plantation.Keyword: Sugarcane, whitegrubs, control strategy, sustainable agriculture
I Ketut Ardana, Deciyanto Soetopo, Syafaruddin Syafaruddin
Published: 21 June 2017
Perspektif, Volume 15; doi:10.21082/psp.v15n2.2016.124-133

Abstract:National sugar production of Indonesia was relatively stagnant in the period of (2010-2014) it’s about 2,5 milion ton, due to low produktivity and sugar rendement as well as a big constrain on sugarcane extensification program. Cropping patern arrangement of sugarcane varieties is very important for increasing sugarcane productivity and rendement, to achieve self sufficiency in sugar production and consumption. The proportion of suitable varieties planting in sugarcane areas is unideal, tend to be excesive for late varieties. Principally, landscapping of sugarcane varieties is planting superior varieties of sugarcane (highly productivity and rendement) which appropriate to planting system, maturity character, harvesting time and processing of sugar in sugar manufacture to gain maximum yield. In Indonesia case for period of 2015-2019, the superior varieties should be choosed which having potencial produktivity > 90 ton per ha and rendement > 9 %, for all maturity group of varieties (early, moderate and late), which suitable for areas development of sugarcane. The important step in the near future are (1). Mapping and determining available superior varieties of sugarcane which suitable for planting at the time periods, (2) Producing seeds of superior varieties, (3) Developing areas of sugarcane, intensification of sugarcane cultivation and developing good management of sugarcane manufacture (PG), (4) Supporting research for producing the most superior sugarcane varieties which are more than superior varieties available in Indonesia at the moment., (5) Highly commitment of all stakeholder to apply the program of cropping patern arrangement for sugarcane varieties in all development areas.
Ms Agus Wahyudi, Ekwasita Rini Pribadi
Published: 21 June 2017
Perspektif, Volume 15; doi:10.21082/psp.v15n2.2016.134-145

Abstract:In the last five years the price of pepper world was increasing rapidly, in 2010 the export price of black pepper and white pepper Indonesia respectively were FOB US $ 3,677 and FOB US $ 5,662 be FOB US $ 8,975 and FOB US $ 12,362 per metric ton in the year 2014. Nevertheless, Indonesian pepper production has declined, namely 59,000 tonnes in 2010 to 52,000 tons in 2014. This reflects the constraints that limit the development of pepper production in Indonesia. Indonesian pepper internally has a competitive advantage in the factor of natural resources and the availability of human resources, but there are weakness in the quality of the labour, especially in the application and knowledge of cultivation technology and the use of superior seeds. To improve the competitiveness of Indonesian pepper, it is necessary to improve the quality and quantity of production by increasing productivity through improvement methods of cultivation that is environmentally friendly, use of certified seeds and high quality input grade, primary product processing that refers to the quality standards, accompanied by the introduction of institutional innovation and technical cultivation with the active role of farmer groups. Due to the successful adoption of the technology depends on knowledge of the perpetrators of farming technologies that will be developed.
Rita Noveriza
Published: 21 June 2017
Perspektif, Volume 15; doi:10.21082/psp.v15n2.2016.87-95

Abstract:ABSTRACKIn Indonesia, the patchouli plant has been developed in twenty one Province and now there are 10 provinces that would be the area of development of patchouli with an area of 150 ha and a seed garden is focused in North Sulawesi with an area of 6 hectares. Mosaic disease on patchouli has been developing very fast, within a period of 3 years have spread to the central cultivation of patchouli in Sumatera, Java and Sulawesi. This is mainly due to the multiplication of patchouli by vegetative cutting. Therefore, the use of virus-free seed patchouli and early detection methods of patchouli seed is a major concern. In addition, the maintenance of patchouli seeds in the nursery to be free of mosaic disease and its vector is very important. Sanitation and spraying the plants with formulation of clove and citronella oil needs to be done every one or two weeks to protect the seed patchouli in nursery and every four weeks in field.Keywords: Pogostemon cablin, Potyvirus, biopesticide, mosaic disease control. ABSTRAKStatus terkini penyakit mosaik pada tanaman nilan dan pengendaliannya di IndonesiaDi Indonesia, tanaman nilam telah dikembangkan di duapuluh satu Provinsi dan sekarang ada 10 provinsi yang akan menjadi daerah pengembangan nilam dengan luas 150 ha dan kebun bibit difokuskan di Sulawesi Utara dengan luas 6 hektar. Penyakit mosaik dari nilam telah berkembang sangat cepat, dalam jangka waktu 3 tahun telah menyebar ke budidaya pusat nilam di Sumatera, Jawa dan Sulawesi. Hal ini terutama disebabkan oleh perbanyakan nilam dengan memotong vegetatif. Oleh karena itu, penggunaan nilam benih bebas virus dan metode deteksi dini benih nilam merupakan perhatian utama. Selain itu, pemeliharaan bibit nilam di persemaian untuk bebas dari penyakit mosaik dan vektor yang sangat penting. Sanitasi dan penyemprotan tanaman dengan formulasi cengkeh dan minyak sereh perlu dilakukan setiap satu atau dua minggu untuk melindungi benih nilam di persemaian dan setiap empat minggu di lapangan.Kata kunci: Pogostemon cablin, Potyvirus, biopestisida, pengendalian penyakit mosaik.
Ir. Usman Daras, Magr.Sc
Published: 21 June 2017
Perspektif, Volume 15; doi:10.21082/psp.v15n2.2016.96-109

Abstract:The province of Bangka Belitung islands are producing areas of black pepper from which Muntok White Pepper wellkown over the world is produced. Unportunetely, the exported commodity is obtained through traditional agricultural system, where cultivated lands of the crop commonly move from one site to others, after 2-3 times of harversting seasons. In establishing of pepper vine orchards, farmers usually open secondary forests (forested lands) and followed by burning any dried parts of cut plants. This may result in declining of soil fertility, productivity of the crop, and its economical life as much humus and soil organic matter is burned as well. The growth of pepper vines will become worse since farmers commonly do not look after the crops properly, including added fertilizers adequately. In the future, such approach may not be maintained due to narrowed land-ownership generated by increase of population and other land use purposes. Therefore, fixed cultivation of the crops may be a single solution in growing pepper vines at Babel. In other words, the crops should be cultivated intensively by introducing proper management of the crops. Any main factors believed to be causes why farmers do so should be identified. The approach is expected to improve productivity, economical life of the crop more than 7 years) and sustainable.
Sumanto, Bambang Prastowo
Published: 21 June 2017
Perspektif, Volume 15; doi:10.21082/psp.v15n2.2016.146-156

Abstract:ABSTRAKPertanian Indonesia memiliki karakter pertanian tropika yang secara alami merupakan kawasan dengan efektivitas dan produktivitas tertinggi di dalam pemanenan dan transformasi energi matahari. Pertanian selama ini memang berperan sebagai penghasil maupun pengguna biomasa, baik untuk pupuk, pakan dan bioenergi termasuk untuk mekanisasi sistem pertaniannya. Pemanfaatan sumber daya hayati di pertanian semakin mengarahkan agar pertanian cerdas dengan memanfaatkan biomasa sedemikian rupa sehingga siklus produksi dan pengembalian biomasa ke lahan pertanian tetap berlangsung. Di lain pihak pertanian semakin dituntut untuk mendukung sektor lain termasuk energi baik untuk pertanian itu sendiri maupun untuk transportasi seperti bioavtur untuk pesawat terbang. Semakin sentralnya peranan biomasa pertanian ini telah mendorong para peneliti mengembangkan risetnya, selain menghasilkan tanaman yang mampu memproduksi hasil utama (grain, gabah, butiran jagung dan sejenis lainnya), juga mulai membuat skenario agar tanaman juga menghasilkan biomasa dengan jumlah yang banyak dan fungsionil. Tanaman padi tidak lagi diharapkan hanya memproduksi gabah dengan jumlah yang banyak, tetapi juga menghasilkan jerami yang lebih banyak dengan kandungan lignin yang rendah serta jerami yang mudah terfermentasi untuk pakan, mempermudah pemisahan lignin sehingga akhirnya mempermudah pembuatan etanol dari jerami padi menggunakan teknologi biofuel generasi dua. Di dunia saat bahkan sedang berlangsung riset-riset dan pengujian serta pemanfaatan biomasa pertanian untuk menghasilkan bioavtur atau jet-fuel. Teknologinya sudah ada dan telah dicoba di mana salahsatunya adalah teknnologi HEFA-SPK (Hydroprocessed Esters and Fatty Acids- Synthesis Paraffin Kerosene). Uji terbang juga sudah dilakukan beberapa kali oleh beberapa perusahaan penerbangan, dan hasilnya sangat memuaskan. Konsekuensinya, pertanian tidak lagi hanya menghasilkan produk primer konvensionil (pangan, pakan dan sejenisnya) tetapi juga harus memposisikan diri untuk menjadi sumber bioenergi dan produk-bio lainnya. Dengan kata lain pertanian ke depan harus menjadi pertanian bioindustri, baik untuk memenuhi keperluan pertanian sendiri maupun untuk memenuhi kebutuhan sektor industri lainnya.Kata kunci : biomasa, bioenergi, bioavtur, bioindustri, biofuel generasi dua, mekanisasi pertanian Indonesian agriculture naturally is tropical agriculture with the highest effectiveness in harvesting of solar energy. Agricultural is also a producer and user of biomass, both for fertilizer, feed and bioenergy including bioenergy for mechanization of agricultural systems. Use of biological resources in agriculture increasingly directed to be smart agriculture by utilizing biomass so that the biomass production cycle in agricultural land is continuing. On the other hand, agriculture increasingly required to support other sectors including energy both for agriculture itself and transportation sector such as bioavtur for airplanes. Increasingly the important role of agricultural biomass has prompted researchers to develop research program, besides improving plant productivity, also began to create grand-scenarios so that plants also can produce biomass in large numbers and functional. Rice plants are no longer expected to only produce large numbers of grain, but also enable to produce more straw with low lignin content, as well as producing an easy-fermented hay for animal feeding, easily separating lignin and cellulose, and easily producing bioethanol from rice straw using a second generation biofuel technologies. Ongoing research, testing and utilization of agricultural biomass to produce bioavtur or jet fuel is now to be one of the top priority in the world. The technology already exists and has been tried, and one of them is Hefa-SPK technology (Hydroprocessed Esters and Fatty Acids- Synthesis Paraffin Kerosene). Flight test has also been carried out several times by several airlines, and the results are very satisfactory. Consequently, agriculture is no longer merely produce primary products (food, feed) but must be repositioning to be a source of bioenergy and also a producer of other bio-products. In other words, in the future, agriculture must be developed to be bioindustry agriculture, both to meet the needs of the farm itself and to meet the needs of other industrial sectors.Key words : biomass, bioenergy, bioindustry, second generation biofuel, agricultural mechanization
Page of 3
Articles per Page
by

Refine Search

Authors

New Search

Advanced search