World Journal of Nano Science and Engineering

Journal Information
ISSN / EISSN : 21614954 / 21614962
Current Publisher: Scientific Research Publishing, Inc. (10.4236)
Total articles ≅ 135
Archived in
SHERPA/ROMEO
Filter:

Latest articles in this journal

Soonmin Ho, Munir Hayet Khan
World Journal of Nano Science and Engineering, Volume 10, pp 1-13; doi:10.4236/wjnse.2020.101001

Abstract:
Oil palm is known as Elaeis guineensis, found in Africa, South East Asia and China. Oil palm shell is used to prepare activated carbon because of high carbon content, high surface area, highly developed porosity and low price. During the physical activation, carbonization occurs in order to create porosity in the raw material. Literature review indicated that carbon material was impregnated with chemical agents such as phosphoric acid, potassium hydroxide, sulphuric acid, sodium hydroxide and zinc chloride in chemical activation process. Experimental results showed that the obtained activated carbon was used in hydrogen storage purpose, supercapacitor, gases and liquid phase adsorption process. On the other hand, oil palm shell was used in manufacturing lightweight concrete because of lighter and will not produce toxic substance. The bulk density and compressive strength of oil palm shell-based concrete were 500 - 600 kg/m3 and more than 25 MPa, respectively.
Ana P. Mousinho, Ronaldo D. Mansano, Nelson Ordonez
World Journal of Nano Science and Engineering, Volume 10, pp 27-35; doi:10.4236/wjnse.2020.102003

Abstract:
In this work, was obtained metallic decorated, single wall Carbon Nanotubes (SWCNTs) using High Density Chemical Vapor Deposition (HDPCVD) system on chromium thin films on a silicon wafers substrate. The characteristics of this deposition method are capacity of the segregation of metallic nanoparticlesas seed for the SWCNT growing. Use of magnetic particle decorated carbon nanotubes increases the applications in magnetic devices, magnetic memory, and magnetic oriented drug delivery. The CNTs’ spectra show a unique emission band, but due to the presence of the chromium, the spectra obtained in this work showed many bands that are related to the CNTs with different diameters. The CNTs obtained by the HDPCVD system are highly aligned and showed metallic features. Results of this work proved the possibility of obtaining the controlled deposition of aligned single-walled CNTs forest films decorated with chromium and suggested future studies in magnetic devices applications.
Luiz Carlos Cordeiro Junior, Élcio Nogueira
World Journal of Nano Science and Engineering, Volume 10, pp 14-26; doi:10.4236/wjnse.2020.101002

Abstract:
A theoretical analysis of the influence of the flow of a coolant containing silver nanoparticle (Ag) in an automotive radiator is presented. The coolant fluid is composed of water or an aqueous solution of Ethylene-Glycol (EG50%) and silver nanoparticles. Ethylene glycol (EG) has been used in automobile radiators for many years due to its compatibility with metals and its anti-cooling properties. Silver nanoparticles are being incorporated into the development of high-precision surgical equipment. It is shown that the rate of heat transfer increases significantly using silver nanoparticles and ethylene glycol and water. There is a maximum for heat exchange between fluids in all analyzed coolant flows—the maximum moves to higher airflow rates when the coolant flow rate is increased. However, the energy dissipation in the stream also increases, but the relationship between the energy dissipated in the flow and the energy transferred in the form of heat is low, which justifies the use of silver nanoparticles and ethylene glycol, or silver nanoparticles and water as a coolant in the automotive vehicle radiator.
Diganta Dutta, Roman Schmidt, Samodha C. Fernando, Indrani Ghosh Dastider
World Journal of Nano Science and Engineering, Volume 9, pp 1-14; doi:10.4236/wjnse.2019.91001

Abstract:
Atomic force microscopy (AFM) is a device that is used for not only high-resolution imaging but also used for measuring forces. It is possible to quantify the surface density change for both colloid and nano probe as well as silica surface. By changing the quantity of ions within a potassium chloride solution, it then becomes possible to evaluate the quantity of ions that attach themselves to AFM colloid probe, nano probe and silica samples. In this study, the force was measured between AFM probes and silica surface in different ionic concentrations. Two different types of AFM probe were used: a colloid probe with a radius of 500 nano-meters and a nano probe with a radius of 10 nano-meters. This study is focused on measuring how the force magnitude, especially electrical double layer force, varied between the two types of probes by changing ionic concentrations. For all test trials, the results agreed with the electrical double layer theory. Although the micron probe was almost an exact match for all ranges, the nano probe was closest within its short-range forces. This is attributed to the formula use when analyzing the electrical double layer force. Because the formula was originally calculated for the micron probe, the shape and size of the nano probe created too many variables for an exact match. Along with quantifying the forces, this experiment allowed for an observation of Van der Waals force making it possible to calculate the Hamaker constant. Conclusively, all results show that the obtained surface charge density increases as the ionic concentration increases. In addition, through the comparison of the results obtained from the nano-sized probe and the micron-sized probe, it was concluded that nano size probe mapped higher surface charge density above the silica surface than the micron-sized probe under the same conditions.
Donald C. Boone
World Journal of Nano Science and Engineering, Volume 9, pp 15-24; doi:10.4236/wjnse.2019.92002

Abstract:
This computational research study analyzes the increase of the specific charge capacity that comes with the reduction of the anisotropic volume expansion during lithium ion insertion within silicon nanowires. This research paper is a continuation from previous work that studied the expansion rate and volume increase. It has been determined that when the lithium ion concentration is decreased by regulating the amount of Li ion flux, the lithium ions to silicon atoms ratio, represented by x, decreases within the amorphous lithiated silicon (a-LixSi) material. This results in a decrease in the volumetric strain of the lithiated silicon nanowire as well as a reduction in Maxwell stress that was calculated and Young’s elastic module that was measured experimentally using nanoindentation. The conclusion as will be seen is that as there is a decrease in lithium ion concentration there is a corresponding decrease in anisotropic volume and a resulting increase in specific charge capacity. In fact the amplification of the electromagnetic field due to the electron flux that created detrimental effects for a fully lithiated silicon nanowire at x = 3.75 which resulted in over a 300% volume expansion becomes beneficial with the decrease in lithium ion flux as x approaches 0.75, which leads to a marginal volume increase of ~25 percent. This could lead to the use of crystalline silicon, c-Si, as an anode material that has been demonstrated in many previous research works to be ten times greater charge capacity than carbon base anode material for lithium ion batteries.
Mohammad E. Khosroshahi, Maryam Tajabadi
World Journal of Nano Science and Engineering, Volume 8, pp 39-55; doi:10.4236/wjnse.2018.83003

Eppakayala Janardhan, Mettu Maheshwar Reddy, Pendyala Venkat Reddy, Madireddy Jaipal Reddy
World Journal of Nano Science and Engineering, Volume 8, pp 33-37; doi:10.4236/wjnse.2018.82002

Jyoti Prakash Pani, Royana Singh, Sanjay Singh
World Journal of Nano Science and Engineering, Volume 8, pp 1-31; doi:10.4236/wjnse.2018.81001

Abstract:
Characterization is absolutely necessary and is a must in order to understand and estimate different silver nanoparticle (nm) size in specific group wise manner which corresponds to group wise in number & sizes, and their importance and effect on biological tissue and organs with agglomeration for nano toxicological studies in environments, the acute toxicity of colloidal silver nano particles (AgNps) were studied in fresh dissected tissues of Swiss Albino mice and their fetuses. In this manuscript, an attempt is made to demonstrate the synthesis and characterization of silver nano particles with a wide range of sizes (from 2.75 nm up to 1908.2 nm in radius) by reducing silver nitrate powder with polyvinyl pyrollidone in aqueous solutions in the presence of a sodium borohydride stabilizer. The resulting particles were found spherical aggregates with a rough surface and poly dispersity index below 18.26% (>0.783 PDI). The particle optical, cumulative, diluents and electrical conductivity properties were examined by dynamic light scattering and zeta potential but morphology was evaluated after examination by transmission electron microscopy & image-j. Silver nanoparticles were directly coated with polyvinyl pyrollidone with a sodium borohydride stabilizer. Optical properties on a single-particle level were studied by means of auto correlation function measurements. The effective poly dispersity index of the charged silver nanoparticles was low enough to form a colloidal crystal at low ionic strength. Colloidal form is found more toxic than suspended particles in 1.5 molar sodium chloride solution; this shows increase of silver nanoparticles size due to agglomeration, will reduce the toxicity but increase teratogenicity.
Sevda Hasan Abdullayeva, Teymur Yashar Orujov, Nahida Nazim Musayeva, Rasim Baba Jabbarov
World Journal of Nano Science and Engineering, Volume 7, pp 17-24; doi:10.4236/wjnse.2017.72002

Abstract:
Increasing light extraction efficiency is an important task when it comes to manufacturing a powerful white light emitting diode with high luminous flux per watt. In this paper the fabrication of a pyramid-shaped 3-dimensional phosphor coating is reported. It is represented by a phosphor cover, shaped into an array of pyramid like formations. It is proposed that such a structure can improve the light extraction efficiency and the color distribution characteristics of any phosphor-converted white LED. The luminous flux and luminous efficacy are being studied as a function of the forward current across the die. It was found out that with this kind of technique it was possible to achieve an 8% - 14% increase in the efficacy of the pc-LED. This increase of light output power is being attributed to the reduction of the phenomena of total internal reflection (TIR) inside the packaging module.
Back to Top Top