INSYST: Journal of Intelligent System and Computation

Journal Information
ISSN / EISSN : 2621-9220 / 2722-1962
Total articles ≅ 42
Filter:

Latest articles in this journal

Wildan Muhammad Aminuddin, Ghulam Asrofi Buntoro, Fauzan Masykur
Published: 30 April 2022
by 10.52985
INSYST: Journal of Intelligent System and Computation, Volume 4, pp 22-31; https://doi.org/10.52985/insyst.v4i1.211

The publisher has not yet granted permission to display this abstract.
Bernard Niklas Satrijo, , Lukman Zaman Pcsw, Pickerling Pickerling
Published: 30 April 2022
by 10.52985
INSYST: Journal of Intelligent System and Computation, Volume 4, pp 32-44; https://doi.org/10.52985/insyst.v4i1.208

The publisher has not yet granted permission to display this abstract.
Michael Lee Lee, Anang Kukuh Adisusilo, Noven Indra Prasetya
Published: 30 April 2022
by 10.52985
INSYST: Journal of Intelligent System and Computation, Volume 4, pp 16-21; https://doi.org/10.52985/insyst.v4i1.191

The publisher has not yet granted permission to display this abstract.
Iwan Chandra
Published: 30 April 2022
by 10.52985
INSYST: Journal of Intelligent System and Computation, Volume 4, pp 01-06; https://doi.org/10.52985/insyst.v4i1.215

The publisher has not yet granted permission to display this abstract.
Andri Suhartono
Published: 30 April 2022
by 10.52985
INSYST: Journal of Intelligent System and Computation, Volume 4, pp 07-15; https://doi.org/10.52985/insyst.v4i1.222

The publisher has not yet granted permission to display this abstract.
Eka Rahayu Setyaningsih
INSYST: Journal of Intelligent System and Computation, Volume 3, pp 93-98; https://doi.org/10.52985/insyst.v3i2.193

Abstract:
Pada penelitian ini akan dibahas mengenai sebuah aplikasi yang dibuat secara khusus untuk mengkategorikan opini masyarakat terhadap sebuah berita Sepak Bola. Opini yang diolah diperoleh dari dua sumber, yaitu melalui hasil crawl situs berita olah raga dan opini yang ditambahkan oleh user sendiri pada aplikasi ini. Opini yang ada nantinya akan disajikan secara terpisah menurut kelompoknya; sentiment positive, negative, maupun netral. Proses klasifikasinya sendiri terdiri dari dua tahap. Tahap pertama adalah proses preprocessing yang terdiri atas proses tokenisasi, normalisasi, case folding, stop word removing, common word removing, stemming. Tahap kedua adalah mengklasifikasikan opini-opini tersebut dengan algoritma Baseline, dan Naive Bayes. Opini yang digunakan untuk proses klasifikasi yaitu opini yang menggunakan bahasa Inggris dari situs fifa.com dan goal.com. Dari perhitungan macroaveraged untuk setiap kelas, didapatkan akurasi 93,06%, presisi 81,90%, dan recall 92,67% untuk kelas sentiment positive. Dari perhitungan kelas sentiment negative didapatkan akurasi 87,73%, presisi 96,29%, dan recall 83,63%. Dari perhitungan kelas sentiment netral didapatkan akurasi 92,26%, presisi 64,44%, dan recall 90,37%. Kesimpulan yang diperoleh saat penelitian ini dari awal hingga akhir adalah, proses crawling yang digunakan untuk mendapatkan berita dan komentar berita sangat membantu dalam penambahan konten website, tetapi banyak sekali komentar berita yang diperoleh kurang cocok untuk proses klasifikasi.
Syabith Umar Ahdan, Joan Santoso, Hendrawan Armanto
INSYST: Journal of Intelligent System and Computation, Volume 3, pp 85-92; https://doi.org/10.52985/insyst.v3i2.195

Abstract:
Berkembangnya teknologi Javascript khususnya AJAX dan CSS membuat halaman web yang dulunya statis menjadi lebih dinamis dengan tampilan yang lebih menarik dan dipenuhi iklan dan rekomendasi artikel lain. Oleh karena itu, sulit untuk mengotomatisasi proses pengambilan konten artikel pada konteks ini. Penelitian ini dibuat untuk menyelesaikan masalah otomatisasi pengambilan konten artikel di Internet. Aplikasi web yang akan dibuat terbagi menjadi empat modul, yaitu web crawler, web extractor, content classifier dan web visualizer. Penelitian ini memiliki dua desain arsitektur. Arsitektur yang pertama adalah arsitektur saat training. Arsitektur yang kedua adalah arsitektur program jadi. Proses training menggunakan 200 URL halaman web dari lima website berbeda. Metode pengujian yang akan digunakan adalah 4-Fold Cross Validation, sehingga 75% dari blok teks akan menjadi data latihan dan 25% dari blok teks akan menjadi data pengujian. Program jadi berupa Web Visualizer yang mengolah JSON file berisi hubungan antara halaman web yang didapatkan dari web crawler sehingga dapat dipresentasikan dalam sebuah grafik. Kesimpulan dari penelitian ini adalah bahwa kombinasi Scrapy, Splash, Neural Network Classifier dan D3 bekerja sangat baik untuk automasi ekstraksi konten artikel website di Internet sekaligus memvisualisasi hubungan antar halaman web. Deep Feed Forward Neural Network (DFFNN) dapat melakukan klasifikasi multi-class konten judul, penulis, dan isi artikel dengan baik selama template halaman web sudah pernah dilatih sebelumnya. DFFNN juga dapat melakukan klasifikasi binari untuk halaman web secara umum dengan F1-score 62.87%, dua kali lebih baik dari SVM yang hanya 31.28%.
Endang Setyati, Raymond Sugiarto
INSYST: Journal of Intelligent System and Computation, Volume 3, pp 78-84; https://doi.org/10.52985/insyst.v3i2.202

Abstract:
Membaca sebuah tulisan yang sama di bidang melengkung berbeda dengan di bidang datar, karena tulisan pada bidang melengkung bergantung pada permukaan bidang lengkungnya. Pada saat ini, banyak sekali tulisan pada iklan pinggir jalan yang ditempel pada bidang melengkung di sepanjang jalan. Tulisan yang digunakan berupa huruf dan angka, dengan berbagai macam background, bentuk dan warna yang diambil di pinggir jalan dengan menggunakan Farey Shape Context. Fitur Farey ini bergantung pada DSS (Digital Straight Line Segment) endpoint dan menggunakan pecahan Augmented Farey sequence. DSS endpoint ini dijadikan sebagai titik fitur atau feature point untuk menemukan shape context dari citra. DSS endpoint tersebut digunakan sebagai acuan bounding box yang akan digunakan sebagai object boundary yang dimana setiap sudutnya merupakan reference point. Untuk melakukan Binning Farey Rank, Augmented Farey Table (AFT) harus dibentuk terlebih dahulu berdasarkan Augmented Farey Sequence yang merupakan pengembangan dari Farey Sequence. Farey Sequence hanya meliputi pecahan dengan pembilang dan penyebut yang positif, sedangkan Augmented Farey Sequence meliputi pecahan dengan pembilang dan penyebut positif serta negatif. Pada penelitian ini digunakan 500 data iklan di pinggir jalan yang melengkung, dimana 70% digunakan sebagai data sample. Dari 70% data sample tersebut didapatkan ribuan karakter berupa huruf dan angka yang dijadikan data sample. Berdasarkan hasil uji coba penelitian yang dilakukan pada 500 Gambar dimana 30% sebagai data testing, maka hasil Farey Shape Context untuk mengenali tulisan berupa huruf dan angka pada iklan pinggir jalan yang melengkung mencapai akurasi benar 74.94% dan salah 25.06%.
Indra Tri Saputra
INSYST: Journal of Intelligent System and Computation, Volume 3, pp 73-77; https://doi.org/10.52985/insyst.v3i2.205

Abstract:
Website koran harian Radar Tarakan memiliki kolom dengan judul “Warga Menulis” di mana menu ini merupakan sarana bagi pembaca untuk menyampaikan keluhan ataupun aspirasi mereka. Yang menjadi permasalahan, pesan pembaca atau opini yang ditampilkan bersifat to the point, hanya isi opini sesuai yang dikirim pembaca tanpa informasi tambahan kepada siapa opini tersebut ditujukan. Tujuan dari penelitian ini adalah melakukan klasifikasi data opini pada website koran harian Radar Tarakan khususnya opini yang berkaitan dengan fasilitas dan pelayanan publik. Klasifikasi merupakan suatu proses pengelompokkan data sesuai dengan kelas atau kategori yang telah ditentukan sebelumnya. Hipotesis yang dapat diambil adalah hasil klasifikasi diharapkan memiliki akurasi hingga 70%. Tahap awal dari proses klasifikasi yaitu preprocessing di mana pada tahap ini hal-hal yang dilakukan antara lain case folding, tokenizing, convert word, stopword removal (filtering) dan stemming. Algoritma yang digunakan dalam penelitian ini adalah Frequency Ratio Accumulation Method (FRAM). Pembuatan aplikasi menggunakan bahasa pemrograman PHP dan database MySQL. Hasil uji coba dari penelitian ini menunjukkan rata-rata akurasi yang diperoleh pada proses klasifikasi opini menggunakan algoritma FRAM adalah 60%. Besar kecilnya prosentase akurasi tergantung dari jumlah data latih yang digunakan. Semakin banyak jumlahnya dapat meningkatkan nilai akurasi akan tetapi hal ini akan berpengaruh terhadap efisiensi kinerja sistem.
Robby Darmawan, Aris Nasuha, Lukman Zaman, Hendrawan Armanto
INSYST: Journal of Intelligent System and Computation, Volume 3, pp 61-72; https://doi.org/10.52985/insyst.v3i2.194

Abstract:
Sebagai pelaku bisnis, kartu nama adalah salah satu hal yang penting untuk bertukar informasi. Namun kartu nama biasanya mudah hilang atau rusak, sehingga beberapa orang biasanya menyimpan informasi dari kartu nama itu pada telepon genggam atau komputer mereka. Penelitian ini akan membuat sistem manajemen kartu nama baik individu dan juga perusahaan dengan ekstraksi informasi kartu nama otomatis untuk mempermudah pengguna perorangan ataupun perusahaan dalam melakukan penyimpanan kartu nama para kolega. Untuk mewujudkan aplikasi yang dilengkapi dengan fitur tersebut dilakukan proses pengenalan karakter pada gambar kartu nama menggunakan Tesseract OCR dan information extraction memanfaatkan klasifikasi entity dengan membangun classifier menggunakan Naive Bayes dan mengkombinasikannya dengan rule based. Hasil uji coba yang telah dilakukan mendapatkan performa 85.1% untuk pengenalan karakter dan 86% untuk pengklasifikasian entity. Dilakukan juga uji coba fungsionalitas terhadap setiap fitur pada sistem ini dengan menggunakan metode blackbox testing yang memastikan setiap aksi yang dilakukan pengguna akan menghasilkan output sesuai target yang diharapkan. Selain itu, dari hasil kuisioner yang berisikan tentang usability dari sistem ini, sebagian besar responden merasa terbantu dalam memanajemen kartu nama dengan menggunakan sistem aplikasi ini.
Back to Top Top