Journal of Psychiatry and Neuroscience

Journal Information
EISSN : 1180-4882
Published by: Joule Inc. (10.1503)
Total articles ≅ 29
Current Coverage

Latest articles in this journal

Duncan G.J. Green, Jinhee Kim, Stephen J. Kish, Rachel F. Tyndale, Matthew N. Hill, Antonio P. Strafella, Junchao Tong, Tina McCluskey, Duncan J. Westwood, Sylvain Houle, et al.
Journal of Psychiatry and Neuroscience, Volume 46, pp 238-246;

Background: Upregulation of the endocannabinoid enzyme fatty acid amide hydrolase (FAAH) has been linked to abnormal activity in frontoamygdalar circuits, a hallmark of posttraumatic stress disorder. We tested the hypothesis that FAAH levels in the amygdala were negatively correlated with functional connectivity between the amygdala and prefrontal cortex, subserving stress and affect control. Methods: Thirty-one healthy participants completed positron emission tomography (PET) imaging with the FAAH probe [C-11]CURB, and resting-state functional MRI scans. Participants were genotyped for the FAAH polymorphism rs324420, and trait neuroticism was assessed. We calculated amygdala functional connectivity using predetermined regions of interest (including the subgenual ventromedial prefrontal cortex [sgvmPFC] and the dorsal anterior cingulate cortex [dACC]) and a seed-to-voxel approach. We conducted correlation analyses on functional connectivity, with amygdala [C-11]CURB binding as a variable of interest. Results: The strength of amygdala functional connectivity with the sgvmPFC and dACC was negatively correlated with [C-11]CURB binding in the amygdala (sgvmPFC: r = −0.38, q = 0.04; dACC: r = –0.44; q = 0.03). Findings were partly replicated using the seed-to-voxel approach, which showed a cluster in the ventromedial prefrontal cortex, including voxels in the dACC but not the sgvmPFC (cluster-level, family-wise error rate corrected p < 0.05). Limitations: We did not replicate earlier findings of a relationship between an FAAH polymorphism (rs324420) and amygdala functional connectivity. Conclusion: Our data provide preliminary evidence that lower levels of FAAH in the amygdala relate to increased frontoamygdalar functional coupling. Our findings were consistent with the role of FAAH in regulating brain circuits that underlie fear and emotion processing in humans.
, Alex D. Shaw, Anna Heath, Kerrie D. Pierce, Philip B. Mitchell, Peter R. Schofield,
Journal of Psychiatry and Neuroscience, Volume 46, pp 247-257;

Background: Bipolar disorder is a highly heritable psychiatric condition for which specific genetic factors remain largely unknown. In the present study, we used combined whole-exome sequencing and linkage analysis to identify risk loci and dissect the contribution of common and rare variants in families with a high density of illness. Methods: Overall, 117 participants from 15 Australian extended families with bipolar disorder (72 with affective disorder, including 50 with bipolar disorder type I or II, 13 with schizoaffective disorder–manic type and 9 with recurrent unipolar disorder) underwent whole-exome sequencing. We performed genome-wide linkage analysis using MERLIN and conditional linkage analysis using LAMP. We assessed the contribution of potentially functional rare variants using a genebased segregation test. Results: We identified a significant linkage peak on chromosome 10q11-q21 (maximal single nucleotide polymorphism = rs10761725; exponential logarithm of the odds [LODexp] = 3.03; empirical p = 0.046). The linkage interval spanned 36 protein-coding genes, including a gene associated with bipolar disorder, ankyrin 3 (ANK3). Conditional linkage analysis showed that common ANK3 risk variants previously identified in genome-wide association studies — or variants in linkage disequilibrium with those variants — did not explain the linkage signal (rs10994397 LOD = 0.63; rs9804190 LOD = 0.04). A family-based segregation test with 34 rare variants from 14 genes under the linkage interval suggested rare variant contributions of 3 brain-expressed genes: NRBF2 (p = 0.005), PCDH15 (p = 0.002) and ANK3 (p = 0.014). Limitations: We did not examine non-coding variants, but they may explain the remaining linkage signal. Conclusion: Combining family-based linkage analysis with next-generation sequencing data is effective for identifying putative disease genes and specific risk variants in complex disorders. We identified rare missense variants in ANK3, PCDH15 and NRBF2 that could confer disease risk, providing valuable targets for functional characterization.
, Mira A. Bajaj, Anita Harrewijn, Chika Matsumoto, Kalina J. Michalska, Elizabeth Necka, Esther E. Palacios-Barrios, Ellen Leibenluft, Lauren Y. Atlas, Daniel S. Pine
Journal of Psychiatry and Neuroscience, Volume 46;

Background: Threat anticipation engages neural circuitry that has evolved to promote defensive behaviours; perturbations in this circuitry could generate excessive threat-anticipation response, a key characteristic of pathological anxiety. Research into such mechanisms in youth faces ethical and practical limitations. Here, we use thermal stimulation to elicit pain-anticipatory psychophysiological response and map its correlates to brain structure among youth with anxiety and healthy youth. Methods: Youth with anxiety (n = 25) and healthy youth (n = 25) completed an instructed threat-anticipation task in which cues predicted nonpainful or painful thermal stimulation; we indexed psychophysiological response during the anticipation and experience of pain using skin conductance response. High-resolution brain-structure imaging data collected in another visit were available for 41 participants. Analyses tested whether the 2 groups differed in their psychophysiological cue-based pain-anticipatory and pain-experience responses. Analyses then mapped psychophysiological response magnitude to brain structure. Results: Youth with anxiety showed enhanced psychophysiological response specifically during anticipation of painful stimulation (b = 0.52, p = 0.003). Across the sample, the magnitude of psychophysiological anticipatory response correlated negatively with the thickness of the dorsolateral prefrontal cortex (pFWE < 0.05); psychophysiological response to the thermal stimulation correlated positively with the thickness of the posterior insula (pFWE < 0.05). Limitations: Limitations included the modest sample size and the cross-sectional design. Conclusion: These findings show that threat-anticipatory psychophysiological response differentiates youth with anxiety from healthy youth, and they link brain structure to psychophysiological response during pain anticipation and experience. A focus on threat anticipation in research on anxiety could delineate relevant neural circuitry.
, Lumikukka Socada, John Söderholm, Roope Heikkilä, Jari Lahti, Jesper Ekelund, Erkki Isometsä
Journal of Psychiatry and Neuroscience, Volume 46;

Background: Previous studies have suggested that processing of visual contrast information could be altered in major depressive disorder. To clarify the changes at different levels of the visual hierarchy, we behaviourally measured contrast perception in 2 centre-surround conditions, assessing retinal and cortical processing. Methods: As part of a prospective cohort study, our sample consisted of controls (n = 29; 21 female) and patients with unipolar depression, bipolar disorder and borderline personality disorder who had baseline major depressive episodes (n = 111; 74 female). In a brightness induction test that assessed retinal processing, participants compared the perceived luminance of uniform patches (presented on a computer screen) as the luminance of the backgrounds was varied. In a contrast suppression test that assessed cortical processing, participants compared the perceived contrast of gratings, which were presented with collinearly or orthogonally oriented backgrounds. Results: Brightness induction was similar for patients with major depressive episodes and controls (p = 0.60, d = 0.115, Bayes factor = 3.9), but contrast suppression was significantly lower for patients than for controls (p < 0.006, d = 0.663, Bayes factor = 35.2). We observed no statistically significant associations between contrast suppression and age, sex, or medication or diagnostic subgroup. At follow-up (n = 74), we observed some normalization of contrast perception. Limitations: We assessed contrast perception using behavioural tests instead of electrophysiology. Conclusion: The reduced contrast suppression we observed may have been caused by decreased retinal feedforward or cortical feedback signals. Because we observed intact brightness induction, our results suggest normal retinal but altered cortical processing of visual contrast during a major depressive episode. This alteration is likely to be present in multiple types of depression and to partially normalize upon remission.
, David Taylor
Journal of Psychiatry and Neuroscience, Volume 46, pp 232-237;

Background: Monitoring of white cell counts during clozapine treatment leads to cessation of therapy if levels fall below predetermined values. Reductions in white cell counts, driven by lower levels of lymphocytes, have been observed with coronavirus disease 2019 (COVID-19). Neutropenia during COVID-19 has not been reported. We present data for 56 patients who were taking clozapine and had COVID-19. Methods: We included patients who were taking clozapine at the time they tested positive for COVID-19. We compared absolute neutrophil counts, lymphocyte counts and white cell counts between baseline and the first week of infection, and baseline and the second week of infection. Results: We observed reductions in absolute neutrophil counts (p = 0.005), lymphocyte counts (p = 0.003) and white cell counts (p < 0.001) between baseline and the first 7 days of COVID-19. All cell counts had returned to baseline levels by days 8 to 14. Six patients experienced neutropenia (absolute neutrophil counts < 2.0 × 109/L) and of those, 4 underwent mandatory cessation of clozapine. For 3 patients, clozapine treatment had been established for more than 6 months with no previous neutropenia, neutrophil levels returned to baseline within 2 weeks and no further neutropenia was observed on restarting treatment. Limitations: This was a retrospective chart review; larger cohorts are required. Clozapine plasma levels were largely not measured by clinicians. Conclusion: These data strongly suggest that mild neutropenia in the acute phase of COVID-19 in patients who are well established on clozapine is more likely to be a consequence of the virus than of clozapine treatment.
Amy Pipe, Beth Patterson, Michael Van Ameringen
Journal of Psychiatry and Neuroscience, Volume 46;

Rachel-Karson Thériault, Joshua D. Manduca, Melissa L. Perreault
Journal of Psychiatry and Neuroscience;

Background: Major depressive disorder is a chronic illness with a higher incidence in women. Dysregulated neural oscillatory activity is an emerging mechanism thought to underlie major depressive disorder, but whether sex differences in these rhythms contribute to the development of symptoms is unknown. Methods: We exposed male and female rats to chronic unpredictable stress and characterized them as stress-resilient or stress-susceptible based on behavioural output in the forced swim test and the sucrose preference test. To identify sex-specific neural oscillatory patterns associated with stress response, we recorded local field potentials from the prefrontal cortex, cingulate cortex, nucleus accumbens and dorsal hippocampus throughout stress exposure. Results: At baseline, female stress-resilient rats innately exhibited higher theta coherence in hippocampal connections compared with stress-susceptible female rats. Following stress exposure, additional oscillatory changes manifested: stress-resilient females were characterized by increased dorsal hippocampal theta power and cortical gamma power, and stress-resilient males were characterized by a widespread increase in high gamma coherence. In stress-susceptible animals, we observed a pattern of increased delta and reduced theta power; the changes were restricted to the cingulate cortex and dorsal hippocampus in males but occurred globally in females. Finally, stress exposure was accompanied by the time-dependent recruitment of specific neural pathways, which culminated in system-wide changes that temporally coincided with the onset of depression-like behaviour. Limitations: We could not establish causality between the electrophysiological changes and behaviours with the methodology we employed. Conclusion: Sex-specific neurophysiological patterns can function as early markers for stress vulnerability and the onset of depression-like behaviours in rats.
, Joaquim Radua, Katya Rubia
Journal of Psychiatry and Neuroscience, Volume 46;

Repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) could provide treatment alternatives to stimulant medication for attention-deficit/hyperactivity disorder (ADHD), given some evidence for improvements in cognition and clinical symptoms. However, despite a lack of solid evidence for their use, rTMS and tDCS are already offered clinically and commercially in ADHD. This systematic review and meta-analysis aimed to critically appraise rTMS and tDCS studies in ADHD to inform good research and clinical practice. A systematic search (up to February 2019) identified 18 studies (rTMS 4, tDCS 14; 311 children and adults with ADHD) stimulating mainly the dorsolateral prefrontal cortex (dlPFC). We included 12 anodal tDCS studies (232 children and adults with ADHD) in 3 random-effects meta-analyses of cognitive measures of attention, inhibition and processing speed. The review of rTMS and tDCS showed positive effects in some functions but not others, and little evidence for clinical improvement. The meta-analyses of 1 to 5 sessions of anodal tDCS over mainly the left or bilateral dlPFC showed trend-level improvements in inhibition and processing speed, but not in attention. Heterogeneity in stimulation parameters, patient age and outcome measures limited the interpretation of findings. The review and meta-analysis showed limited evidence that 1 to 5 sessions of rTMS and tDCS, mostly of the dlPFC, improved clinical or cognitive measures of ADHD. These findings did not support using rTMS or tDCS of the dlPFC as an alternative neurotherapy for ADHD as yet. Larger, multi-session stimulation studies identifying more optimal sites and stimulation parameters in combination with cognitive training could achieve larger effects.
, Atsuko Nagano-Saito, Michele S. Milella, Diana Yae Sakae, Mathieu Favier, Erika Vigneault, Leanne Louie, Alison Hamilton, Stephen S.G. Ferguson, Pedro Rosa-Neto, et al.
Journal of Psychiatry and Neuroscience, Volume 46;

Glutamate transmission is implicated in drug-induced behavioural sensitization and the associated long-lasting increases in mesolimbic output. Metabotropic glutamate type 5 (mGlu5) receptors might be particularly important, but most details are poorly understood. We first assessed in mice (n = 51, all male) the effects of repeated dextroamphetamine administration (2.0 mg/kg, i.p.) on locomotor activity and binding of the mGlu5 ligand [3H]ABP688. In a parallel study, in 19 stimulant-drug-naïve healthy human volunteers (14 female) we administered 3 doses of dextroamphetamine (0.3 mg/kg, p.o.) or placebo, followed by a fourth dose 2 weeks later. We measured [11C]ABP688 binding using positron emission tomography before and after the induction phase. We assessed psychomotor and behavioural sensitization using speech rate, eye blink rate and self-report. We measured the localization of mGlu5 relative to synaptic markers in mouse striatum using immunofluorescence. We observed amphetamine-induced psychomotor sensitization in mice and humans. We did not see group differences in mGlu5 availability following 3 pre-challenge amphetamine doses, but group differences did develop in mice administered 5 doses. In mice and humans, individual differences in mGlu5 binding after repeated amphetamine administration were negatively correlated with the extent of behavioural sensitization. In drug-naïve mice, mGlu5 was expressed at 67% of excitatory synapses on dendrites of striatal medium spiny neur. Correlational results should be interpreted as suggestive because of the limited sample size. We did not assess sex differences. Together, these results suggest that changes in mGlu5 availability are not part of the earliest neural adaptations in stimulant-induced behavioural sensitization, but low mGlu5 binding might identify a higher propensity for sensitization.
Back to Top Top