Journal of Computer Science and Applied Mathematics

Journal Information
EISSN : 1857-9582
Published by: Union of Researchers of Macedonia (10.37418)
Total articles ≅ 19
Filter:

Latest articles in this journal

Ba Demba Bocar
Journal of Computer Science and Applied Mathematics, Volume 3, pp 59-67; https://doi.org/10.37418/jcsam.3.2.2

Abstract:
In this paper, we study several properties of the bifractional Brownian motion introduced by Houdr\'{e} and Villa.
Lo Fatimata, Ba Demba Bocar, Diop Aba
Journal of Computer Science and Applied Mathematics, Volume 3, pp 68-81; https://doi.org/10.37418/jcsam.3.2.3

Abstract:
Zero-inflated regression models have had wide application recently and have provenuseful in modeling data with many zeros. Zero-inflated Binomial (ZIB) regression model is an extension of the ordinary binomial distribution that takes into account the excess of zeros. In comparing the probit model to the logistic model, many authors believe that there is little theoretical justification in choosing one formulation over the other in most circumstances involving binary responses. The logit model is considered to be computationally simpler but it is based on a more restrictive assumption of error independence, although many other generalizations have dealt with that assumption as well. By contrast, the probit model assumes that random errors have a multivariate normal distribution. This assumption makes the probit model attractive because the normal distribution provides a good approximation to many other distributions. In this paper, we develop a maximum likelihood estimation procedure for the parameters of a zero-inflated Binomial regression model with probit link function for both component of the model. We establish the existency, consistency and asymptotic normality of the proposed estimator.
L. Alex, Indulal G
Journal of Computer Science and Applied Mathematics, Volume 3, pp 37-57; https://doi.org/10.37418/jcsam.3.2.1

Abstract:
Wiener index is the first among the long list of topological indices which was used to correlate structural and chemical properties of molecular graphs. In \cite{Eli} M. Eliasi, B. Taeri defined four new sums of graphs based on the subdivision of edges with regard to the cartesian product and computed their Wiener index. In this paper, we define a new class of sums called $F_H$ sums and compute the Wiener index of the resulting graph in terms of the Wiener indices of the component graphs so that the results in \cite{Eli} becomes a particular case of the Wiener index of $F_H$ sums for $H = K_1$, the complete graph on a single vertex.
I. Gopalapillai, D.C. Scaria
Journal of Computer Science and Applied Mathematics, Volume 3, pp 22-36; https://doi.org/10.37418/jcsam.3.1.4

Abstract:
Let $G$ be a connected graph with a distance matrix $D$. The distance eigenvalues of $G$ are the eigenvalues of $D$, and the distance energy $E_D(G)$ is the sum of its absolute values. The transmission $Tr(v)$ of a vertex $v$ is the sum of the distances from $v$ to all other vertices in $G$. The transmission matrix $Tr(G)$ of $G$ is a diagonal matrix with diagonal entries equal to the transmissions of vertices. The matrices $D^L(G)= Tr(G)-D(G)$ and $D^Q(G)=Tr(G)+D(G)$ are, respectively, the Distance Laplacian and the Distance Signless Laplacian matrices of $G$. The eigenvalues of $D^L(G)$ ( $D^Q(G)$) constitute the Distance Laplacian spectrum ( Distance Signless Laplacian spectrum ). The subdivision graph $S(G)$ of $G$ is obtained by inserting a new vertex into every edge of $G$. We describe here the Distance Spectrum, Distance Laplacian spectrum and Distance Signless Laplacian spectrum of some types of subdivision related graphs of a regular graph in the terms of its adjacency spectrum. We also derive analytic expressions for the distance energy of $\bar{S}(C_p)$, partial complement of the subdivision of a cycle $C_p$ and that of $\overline {S\left( {C_p }\right)}$, complement of the even cycle $C_{2p}$.
Deniz Ünal
Journal of Computer Science and Applied Mathematics, Volume 3, pp 17-22; https://doi.org/10.37418/jcsam.3.1.3

Abstract:
Proposing a function for modeling growth is an important development for the curve fitting of data. This study gives a derivation for a new mathematical equation for growth and reports some significant features of this model.
Deniz Ünal
Journal of Computer Science and Applied Mathematics, Volume 3, pp 17-22; https://doi.org/10.37418/amsj.3.1.3

Abstract:
Proposing a function for modeling growth is an important development for the curve fitting of data. This study gives a derivation for a new mathematical equation for growth and reports some significant features of this model.
B. Alkasasbeh, H. Hdeib
Journal of Computer Science and Applied Mathematics, Volume 3, pp 9-15; https://doi.org/10.37418/jcsam.3.1.2

Abstract:
In this paper we discuss some pairwise properly hereditary properties concerning pairwise separation axiom, and obtain several results related to these properties.
Hanen Ferchichi
Journal of Computer Science and Applied Mathematics, Volume 3, pp 1-7; https://doi.org/10.37418/jcsam.3.1.1

Abstract:
In this paper, we present a mixed formulation for a bending dominated Koiter shell with obstacle in order to avoid numerical locking or the deterioration of the convergence when the small parameter the thickness goes to zero. This formulation is a combination between the free locking mixed formulation presented in [1,10] and the Koiter’s model with obstacle for flexural shell proposed in [6].
A. Ebadian, Sh. Najafzadeh, S. Azizi
Journal of Computer Science and Applied Mathematics, Volume 2, pp 1-10; https://doi.org/10.37418/jcsam.2.1.1

Abstract:
In this paper we investigate the problem of stability for a certain class of $p$-valent functions in $T_{\delta}$-neighborhoods and we find the lower and upper bounds of radius of stability.
H. M. Srivastava, Shigeyoshi Owa
Journal of Computer Science and Applied Mathematics, Volume 2, pp 11-13; https://doi.org/10.37418/jcsam.2.1.2

Abstract:
Let $\mathcal{P}(\alpha)$ be the class of functions $p(z)$ which are Carathéodory functions of order $\alpha$ $(0 \le\alpha
Back to Top Top