Single Molecule and Single Cell Sequencing

Journal Information
ISSN / EISSN : 0065-2598 / 2214-8019
Published by: Springer Nature (10.1007)
Total articles ≅ 2,115
Current Coverage

Latest articles in this journal

Yichen Wang,
Published: 31 July 2021
Regenerative medicine promises a bright future where damaged body parts can be restored, rejuvenated, and replaced. The application of regenerative medicine is interdisciplinary and covers nearly all fields of medical sciences and molecular engineering. This review provides a road map on how regenerative medicine is applied on the levels of cell, tissue, and organ and summarizes the advantages and limitation of human pluripotent stem cells in disease modeling and regenerative application.
Valentina Papa, Nunzio Cosimo Maria Salfi, Roberta Costa, Ilaria Bettocchi, Emilia Ricci, Duccio Maria Cordelli, Francesca Locatelli, Fabio Caramelli,
Published: 24 July 2021
TORCH (Toxoplasmosis, Rubella, Cytomegalovirus, Herpes Simplex Virus and Syphilis) infections are a major cause of intrauterine and perinatal infections with associated morbidity and mortality. Neonatal Herpes Simplex Virus infection caused by an enveloped, double-stranded DNA virus of the Herpesviridae family is devastating and fatal. Herpes Viruses are not hepatotropic but may rarely cause hepatitis. Most cases of HSV hepatitis rapidly progress to fulminant hepatic failure and often fatal before the diagnosis or transplantation. Nowadays, despite the availability of antiviral treatment (acyclovir), the outcome remains poor because of late identification of hepatic Herpes Simplex Virus (HSV) infection. We report a male neonate suspected with a metabolic/mitochondrial disease and multi-organ involvement but who developed a fulminant hepatic failure and disseminated coagulopathy secondary to HSV type 1 (HSV-1) infection. The postmortem diagnosis was performed demonstrating HSV-1 in liver tissue by transmission electron microscopy and by retrospective detection of HSV specific antigens by immunohistochemistry.
Muzammal Hussain, , Gui-Zhen Wang,
Advances in experimental medicine and biology, Volume 1302, pp 71-90;

Chemokines have emerged as important players in tumorigenic process. An extensive body of literature generated over the last two or three decades strongly implicate abnormally activated or functionally disrupted chemokine signaling in liaising most—if not all—hallmark processes of cancer. It is well-known that chemokine signaling networks within the tumor microenvironment are highly versatile and context-dependent: exert both pro-tumoral and antitumoral activities. The C-X-C motif chemokine ligand 13 (CXCL13), and its cognate receptor CXCR5, represents an emerging example of chemokine signaling axes, which express the ability to modulate tumor growth and progression in either way. Collateral evidence indicate that CXCL13-CXCR5 axis may directly modulate tumor growth by inducing proliferation of cancer cells, as well as promoting invasive phenotypes and preventing their apoptosis. In addition, CXCL13-CXCR5 axis may also indirectly modulate tumor growth by regulating noncancerous cells, particularly the immune cells, within the tumor microenvironment. Here, we review the role of CXCL13, together with CXCR5, in the human tumor microenvironment. We first elaborate their patterns of expression, regulation, and biological functions in normal physiology. We then consider how their aberrant activity, as a result of differential overexpression or co-expression, may directly or indirectly modulate the growth of tumors through effects on both cancerous and noncancerous cells.
, Stephanie Figueroa, Raj Tiwari, Jan Geliebter
Advances in experimental medicine and biology, Volume 1302, pp 15-24;

Cancer progression is driven, to a large extent, by the action of immune cells that have been recruited to tumor sites through interactions between chemokines and their receptors. Chemokines of the CXC subfamily are secreted by both tumor and non-tumor cells within the microenvironment of the tumor, where they induce either antitumor or protumor activity that fosters either clearance or progression of the tumor, respectively. Understanding the nature of these interactions is important to envisage novel approaches targeting the essential components of the tumor microenvironment, increasing the odds for favorable patient outcomes. In this chapter we describe the involvement of the chemokine (C-X-C motif) ligand 3 (CXCL3) in the human tumor microenvironment and its effects on immune and non-immune cells. Because of the limited data on the CXCL3 signaling in the tumor microenvironment, we extend the review to other members of the CXC subfamily of chemokines. This review also addresses the future trends or directions for therapeutic interventions that target signaling pathways used by these molecules in the tumor microenvironment.
, Hasan Uludag, Doga Kavaz, Nahit Rizaner
Published: 22 July 2021
Breast cancer is the leading cancer type diagnosed among women in the world. Unfortunately, drug resistance to current breast cancer chemotherapeutics remains the main challenge for a higher survival rate. The recent progress in the nanoparticle platforms and distinct features of nanoparticles that enhance the efficacy of therapeutic agents, such as improved delivery efficacy, increased intracellular cytotoxicity, and reduced side effects, hold great promise to overcome the observed drug resistance. Currently, multifaceted investigations are probing the resistance mechanisms associated with clinical drugs, and identifying new breast cancer-associated molecular targets that may lead to improved therapeutic approaches with the nanoparticle platforms. Nanoparticle platforms including siRNA, antibody-specific targeting and the role of nanoparticles in cellular processes and their effect on breast cancer were discussed in this article.
Miguel Martínez-Rodríguez,
Advances in experimental medicine and biology, Volume 1302, pp 113-132;

Chemokines are a group of small proteins which play an important role in leukocyte migration and invasion. They are also involved in the cellular proliferation and migration of tumor cells. Chemokine CCL27 (cutaneous T cell-attracting chemokine, CTACK) is mainly expressed by keratinocytes of the normal epidermis. It is well known that this chemokine plays an important role in several inflammatory diseases of the skin, such as atopic dermatitis, contact dermatitis, and psoriasis. Moreover, several studies have shown an association between CCL27 expression and a variety of neoplasms including skin cancer. In this chapter, we address the role of chemokine CCL27 in the tumor microenvironment in the most relevant cancers of the skin and other anatomical locations. We also make a brief comment on future perspectives and the potential relation of CCL27 with different immunotherapeutic modalities.
Advances in experimental medicine and biology, Volume 1302, pp 91-98;

Chemokines with their network play an important role in cancer growth, metastasis, and host-tumor interactions. Of many chemokines, C-C motif chemokine ligand 24 (CCL24) has been shown to contribute to tumorigenesis as well as inflammatory diseases like asthma, allergies, and eosinophilic esophagitis. CCL24 is expressed in some tumor cells such as colon cancer, hepatocellular carcinoma, and cutaneous T cell lymphoma. CCL24 can be used as a potential biomarker in several cancers including colon cancer, non-small cell cancer, and nasopharyngeal carcinoma as the plasma level of CCL24 is increased. The various functions of CCL24 contribute to the biology of cancer by M2 macrophage polarization, angiogenesis, invasion and migration, and recruitment of eosinophils.
Qun Gao,
Advances in experimental medicine and biology, Volume 1302, pp 41-50;

CXCL11 which can bind to two different chemokine receptors, CXCR3 and CXCR7, has found a prominent place in current tumor research. In this chapter, we mainly discuss the current evidence on the role of the immune response of CXCL11 in tumor microenvironment (TME). The diverse functions of CXCL11 include inhibiting angiogenesis, affecting the proliferation of different cell types, playing a role in fibroblast directed carcinoma invasion, increasing adhesion properties, suppressing M2 macrophage polarization, and facilitating the migration of certain immune cells. In addition, we discussed the application of CXCL11 as an adjuvant to various mainstream anti-cancer therapies and the future challenges in the application of CXCL11 targeted therapies.
Hina Mir,
Advances in experimental medicine and biology, Volume 1302, pp 99-111;

Multiple checkpoint mechanisms are overridden by cancer cells in order to develop into a tumor. Neoplastic cells, while constantly changing during the course of cancer progression, also craft their surroundings to meet their growing needs. This crafting involves changing cell surface receptors, affecting response to extracellular signals and secretion of signals that affect the nearby cells and extracellular matrix architecture. This chapter briefly comprehends the non-cancer cells facilitating the cancer growth and elaborates on the notable role of the CCR9-CCL25 chemokine axis in shaping the tumor microenvironment (TME), directly and via immune cells. Association of increased CCR9 and CCL25 levels in various tumors has demonstrated the significance of this axis as a tool commonly used by cancer to flourish. It is involved in attracting immune cells in the tumor and determining their fate via various direct and indirect mechanisms and, leaning the TME toward immunosuppressive state. Besides, elevated CCR9-CCL25 signaling allows survival and rapid proliferation of cancer cells in an otherwise repressive environment. It modulates the intra- and extracellular protein matrix to instigate tumor dissemination and creates a supportive metastatic niche at the secondary sites. Lastly, this chapter abridges the latest research efforts and challenges in using the CCR9-CCL25 axis as a cancer-specific target.
, Susan E. Ozanne
Advances in experimental medicine and biology, Volume 1327, pp 215-223;

There have been recent encouraging reports about the development of vaccines for COVID-19. Given the scale and effects of this pandemic on public health and economies worldwide, there has been an unprecedented approach across the globe, leading to the emergence of vaccine candidates many times faster than the normal process would allow. This review gives up-to-date information as of November 28, 2020, on the latest developments in this area and covers the plans to roll out the most promising vaccines across the entire world to halt the spread of this devastating virus.
Back to Top Top