Journal Information
EISSN : 1999-4907
Published by: MDPI (10.3390)
Total articles ≅ 6,153
Current Coverage
SCOPUS
SCIE
GEOBASE
COMPENDEX
DOAJ
Archived in
SHERPA/ROMEO
Filter:

Latest articles in this journal

Published: 15 October 2021
by MDPI
Forests, Volume 12; https://doi.org/10.3390/f12101407

Abstract:
In 2016, the USDA Forest Service, the largest wildfire management organization in the world, initiated the risk management assistance (RMA) program to improve the quality of strategic decision-making on its largest and most complex wildfire events. RMA was designed to facilitate a more formal risk management process, including the use of the best available science and emerging research tools, evaluation of alternative strategies, consideration of the likelihood of achieving objectives, and analysis of tradeoffs across a diverse range of incident objectives. RMA engaged personnel from a range of disciplines within the wildfire management system to co-produce actionable science that met the needs of the highly complex incident decision-making environment while aiming to align with best practices in risk assessment, structured decision-making, and technology transfer. Over the four years that RMA has been in practice, the content, structure, and method of information delivery have evolved. Furthermore, the RMA program’s application domain has expanded from merely large incident support to incorporate pre-event assessment and training, post-fire review, organizational change, and system improvement. In this article, we describe the history of the RMA program to date, provide some details and references to the tools delivered, and provide several illustrative examples of RMA in action. We conclude with a discussion of past and ongoing program adaptations and of how this can inform ongoing change efforts and offer thoughts on future directions.
Published: 15 October 2021
by MDPI
Forests, Volume 12; https://doi.org/10.3390/f12101409

Abstract:
The growth and production potential of a tree depends on its crown dimensions as these are closely related to a tree’s photosynthetic capacity. However, tree crowns have been studied less compared to their main stems because of their lower market value and because the measurement of crown dimensions, such as crown volume or surface area, is difficult. Frequently, an individual tree’s live crown ratio (LCR) is predicted by linear or nonlinear models that are a function of easy-to-measure dendrometric variables using ordinary least-squares techniques. Using the long-term data from established genetic and spacing trials, we developed and evaluated the predictive performance of three nonlinear models and introduced a new generalized linear model for predicting LCR. The nonlinear models were fit using exponential, Weibull, and Richards functions. The generalized linear model was based on beta regression. This resulted in a slightly smaller error than the other models in predicting the LCR of loblolly pine trees used in this study. Crown ratio is measured in percentage unit and should be modeled using generalized linear models that assume a beta distribution for error terms.
Published: 15 October 2021
by MDPI
Forests, Volume 12; https://doi.org/10.3390/f12101411

Abstract:
Crop tree management (CTM) is a widely applicable silviculture technology that is used to improve the performance of individual trees. However, only little information is available about the effects of the CTM regime on the soil microbial community structure. We conducted a study to explore the effects of short-term (five years) CTM on the soil bacterial and fungal diversity, community composition, and structure in the 0–10 cm soil layer in a Larix gmelinii (Rupr.) Kuzen. plantation. We set out to investigate the differential response of bacterial and fungal communities to variations in soil properties mediated by short-term CTM. Compared with the control plots, the soil microbial biomass carbon and microbial biomass nitrogen in CTM increased significantly by 64.2% and 32.3%, respectively. CTM significantly promoted the content of soil organic carbon, dissolved organic carbon, and nitrate nitrogen, and reduced the content of dissolved organic nitrogen. CTM changed the Shannon and Simpson indices of soil fungi to a remarkable extent but had little effect on the α diversity of bacterial communities. The bacterial β diversity was more sensitive to CTM than fungi. The relative abundance of Verrucomicrobiae (the dominant class of soil bacteria) in CTM was significantly increased by 78.2%, while the relative abundance of Agaricomycetes (dominant class for soil fungi) was reduced by 43.3%. We observed a significantly increased number of unique OTUs for soil fungi in the CTM plots. Redundancy analysis showed that dissolved organic carbon, soil moisture, and total phosphorus content significantly affected the composition of bacterial communities, while soil dissolved organic nitrogen, C/N, and total phosphorus drove the high variation in fungal community composition. Overall, our results emphasize the divergent response of soil bacterial and fungal communities in Larix gmelinii plantations to short-term CTM. We must pay more attention to the functional role of soil microbiota in future forest management.
Published: 15 October 2021
by MDPI
Forests, Volume 12; https://doi.org/10.3390/f12101404

Abstract:
Abiotic stress adversely affects plant growth and metabolism and as such reduces plant productivity. Recognized as a major contributor in the production of reactive oxygen species (ROS), it hinders the growth of plants through induction of oxidative stress. Biostimulants such as melatonin have a multifunctional role, acting as a defense strategy in minimizing the effects of oxidative stress. Melatonin plays important role in plant processes ranging from seed germination to senescence, besides performing the function of a biostimulant in improving the plant’s productivity. In addition to its important role in the signaling cascade, melatonin acts as an antioxidant that helps in scavenging ROS, generated as part of different stresses among plants. The current study was undertaken to elaborate the synthesis and regulation of melatonin in plants, besides emphasizing its function under various abiotic stress namely, salt, temperature, herbicides, heavy metals, and drought. Additionally, a special consideration was put on the crosstalk of melatonin with phytohormones to overcome plant abiotic stress.
Published: 15 October 2021
by MDPI
Forests, Volume 12; https://doi.org/10.3390/f12101405

Abstract:
Wood microdensitometry provides an integrated measurement of inter and intra-annual changes in wood anatomy and lignification. Although it can be acquired through a wide array of techniques, X-ray-based techniques are still the standard. Conversion of a grayscale X-ray image to density and annual ring boundaries delimitation is performed through image analysis software. Proprietary software has dominated these applications, albeit Free Open Source Software (FOSS) has been developed recently. We present ρ-MtreeRing, a user-friendly FOSS that streamlines the entire microdensitometry analysis process through a graphical user interface based on Shiny R Software without any programming knowledge. We compared the results of this program with the most widely used commercial software (WinDendro), showing the validity of the results. ρ-MtreeRing can be personalized and developed by the microdensitometry research community.
, Roma Fujimoto,
Published: 15 October 2021
by MDPI
Forests, Volume 12; https://doi.org/10.3390/f12101410

Abstract:
Soil respiration plays a critical role in driving soil carbon (C) cycling in terrestrial forest ecosystems. However, evidence to demonstrate the response of roots, mycorrhizal hyphae, and soil free-living microbes of soil respiration and their temperature sensitivity (Q10) remains lacking. Here, we used a root exclusion method to assess the contribution and response of root respiration (Rroot), mycorrhizal respiration (Rmyc), and (soil organic matter) SOM respiration (Rsom) to soil temperature in a larch forest. During the growing period, the contributions of Rroot, Rmyc, and Rsom to soil respiration were 42%, 6%, and 52%, respectively. The respiration rates of all components increased exponentially with increasing temperature. Based on these constitutive respiration rates with soil temperature, the Q10 values for Rroot, Rmyc, and Rsom were 3.84, 5.18, and 1.86, respectively. The results showed that the response to temperature change was different among roots, mycorrhizal hyphae, and microbes in the soil, while the temperature sensitivity of autotrophic respiration was higher than that of heterotrophic respiration. Importantly, the Rmyc at this site was extremely sensitive to temperature, although its overall emission was small. Mycorrhizal associations were identified as the key drivers of soil respiration and temperature sensitivity. A good understanding of the different soil CO2 efflux components will provide useful information for determining soil C fluxes and predicting soil C dynamics under changing environments.
Published: 15 October 2021
by MDPI
Forests, Volume 12; https://doi.org/10.3390/f12101408

Abstract:
The effect of sucrose concentration on the micropropagation of axillary shoots of willow was investigated. The following factors were examined: the culture system (semisolid medium in glass jars versus liquid medium in temporary immersion bioreactors), the type of explant (apical and basal sections), the frequency of immersion, and CO2 enrichment. Shoots and leaf growth were significantly higher in RITA® bioreactors than in the jars for all the sucrose treatments. Apical or basal sections of willow cultured in bioreactors under high light intensity (150 µmol m−2 s−1) and ventilated six times a day with CO2-enriched air were successfully proliferated without sucrose, whereas shoots cultured in jars did not proliferate well if sucrose concentration was 0.5% or lower. More roots were formed when sucrose was added to the medium. Shoots cultured in bioreactors were successfully acclimatized irrespective of the sucrose treatment and the root biomass when transferred to ex vitro conditions. This is the first report of photoautotrophic willow micropropagation, our results confirm the importance of proper gaseous exchange to attain autotrophy during in vitro propagation.
Published: 15 October 2021
by MDPI
Forests, Volume 12; https://doi.org/10.3390/f12101406

Abstract:
Konishii fir (Cunninghamia konishii Hayata) is n important conifer in Taiwan. The purpose of this study was to predict stand volume (V), aboveground biomass accumulation (AGB), and aboveground carbon storage (AGCST) for a Konishii fir plantation. This study was located at the Huisun Experimental Forest Station of Nantou County located in central Taiwan. Four sample plots, each with an area of 0.05 ha, were installed and surveyed from 29 June to 2 July 2020. Two models, the diameter distribution model (DDM) and allometric model (AM), were used to predict V, AGB, and AGCST. Each item predicted by these two models was compared by the paired sample t-test. We employed the Weibull function to quantify stand diameter distribution and this function can effectively quantify diameter distribution, because all plots passed the examination by the Kolmogorov–Smirnov test (non-significant). Therefore, the Weibull function was suitable for developing the DDM. The predicted V, AGB, and AGCST were 538.43 ± 140.52 m3 ha−1, 203.25 ± 52.79 Mg ha−1, and 100.85 ± 26.30 Mg ha−1 by DDM; and 555.90 ± 145.42 m3 ha−1, 209.10 ± 51.25 Mg ha−1, and 103.78 ± 25.51 Mg ha−1 by AM, respectively. Each item was insignificantly different between DDM and AM, indicating similarity in results for both predictions. Meanwhile, using DDM is advantageous, as it can provide more yield information in diameter classes; therefore, this approach was recommended for yield prediction of the Konishii fir plantation.
Published: 14 October 2021
by MDPI
Forests, Volume 12; https://doi.org/10.3390/f12101403

Abstract:
The mass planting of mangroves has been proposed as a mitigation strategy to compensate for mangrove loss. However, the effects of mangrove vegetation on the abundance and community composition of macrobenthos remain controversial. The macrobenthic communities in four intact mangrove forests with different conditions and the adjacent nonvegetated mudflats of two mangrove species with distinct stand structures on the western coast of Taiwan were examined. Some macrobenthic taxa occurred only in the mangroves, suggesting macrobenthic critical habitats. Seasonal shift in community composition was more pronounced in the mudflats than in the mangroves, possibly due to the rich food supply, low temperature, and shelter function provided by mangrove forests. However, crab density was always lower in the mangroves than in the mudflats. There was a negative relationship between the stem density of Kandelia obovata (S., L.) and infaunal density. The pneumatophore density of Avicennia marina (Forsk.) correlated negatively with epifaunal density. Our results show that the response of macrobenthic abundance and community composition to mangrove vegetation was inconsistent. We reason that mangroves are critical habitats for the macrobenthos in the mudflats. However, if mangrove tree density is high, we predict that the macrobenthic density will decrease. This suggests that at some intermediate level of mangrove tree density, where there are enough mangrove trees to harbor a macrobenthic community but not enough trees to significantly reduce this density, mangroves management can be optimally achieved to promote the presence of a diverse and dense macrobenthic community.
Published: 14 October 2021
by MDPI
Forests, Volume 12; https://doi.org/10.3390/f12101398

Abstract:
Although soil phosphorus is essential for vegetation growth it is not always found in labile forms, hampering its absorption by plants, and is limited in forest ecosystems. This study explores soil P state and availability in calcareous soils, determining which processes affect its different pools and which soil parameters influence forest productivity of a Mediterranean pine species. We used a sequential fractionation method to determine P fractions in the soil according to their lability and their organic or inorganic nature. Those fractions were related to different soil and climatic parameters and to the site index in 32 Pinus halepensis plots of the National Spanish Forest Inventory. Soil texture, carbonates content, water retention capacity and organic matter substantially affected P fractions in the calcareous soils studied. Membrane extractable P was mainly influenced by organic matter-related parameters while the predominant P fraction in these soils, the primary P, was linked to the carbonates content. The biological mineralization processes played a key role in the soil P cycle. Total P, carbonates content, soil texture and water availability drove forest productivity in the studied plots.
Back to Top Top