Microscopy Research

Journal Information
ISSN / EISSN : 2329-3306 / 2329-3314
Current Publisher: Scientific Research Publishing, Inc. (10.4236)
Total articles ≅ 40
Archived in

Latest articles in this journal

Lucia Proietti D’Empaire, Félix Tejero, Hector J. Finol, Pedro M. Aso, Antonio Roschman-Gonzalez
Microscopy Research, Volume 08, pp 31-42; doi:10.4236/mr.2020.83003

A murine model is used to study qualitatively and quantitatively the splenic ultrastructural changes induced by two Trypanosoma evansi strains derived from naturally infected local equine hosts (Equusasinus and E. caballus); T. evansi causes ultrastructural modifications in the spleen of the infected mice. The modifications include tissular disorganization, fibrosis, mitochondrial swelling, apoptosis and necrosis. The initial phases of the infection are quite similar, whereas the final phases differ qualitatively depending on the strain’s source. The ultrastructural quantitative changes were studied in the reticular splenocytes covering alterations in the area of the cytoplasm and nucleus. Analysis of the results shows the induction of various splenic alterations caused by local T. evansi strains. Also, it was documented that discriminative time modulation, as well as progressive tissular, cellular and subcellular changes, are more associated with derived infections from E. caballus strain.
Sayid Ali Sayid, Aliyu Dadan-Garba, Daniel Elaigwu Enenche, Barnabas Achakpa Ikyo
Microscopy Research, Volume 08, pp 1-7; doi:10.4236/mr.2020.81001

We present a Scanning Electron Microscopy (SEM) technique for the characterisation of biological and non-biological samples at nano-scale level. Scanning Electron Microscopy has been around for a long while especially in material science laboratories in developed countries. The SEM has enabled scientist to have a better understanding of microstructure by providing unsurpassed optical magnifications of samples. In this introductory paper, we introduce the techniques of using SEM to capture highly magnified microstructure of a fly found on an African soybean (Glycine max) seed. We are able to estimate the number of lenses in each eye and zoom into features that could describe its life characteristics. Hexagonal lenses are estimated to have sizes ranging from 14 um to 19 um. This paper also presents a finding of a sea coral “pie like structure” on a single grain of sand used for water filtration.
Bélgica J. Molina, Héctor J. Finol
Microscopy Research, Volume 08, pp 9-30; doi:10.4236/mr.2020.82002

Skin contains various populations of stem cells (SCs). Among these are hair follicle stem cells (HFSCs) in the bulge region. The behavior of HFSCs deserves to be widely studied due to the benefits to be derived from their identification, isolation, and amplification. Skin samples of newborn mice (n = 32) and human adults (n = 10) were used, and the bulge region was isolated and cultured. The isolation and characterization of cells were conducted through immunocytochemistry and immunofluorescence, using mainly CD34 and CD200 monoclonal antibodies. Initially, cells grew slowly from the explant around the bulge region, accruing cells with different morphology in both mouse and human, latter being mostly polygonal; the mouse cells reaching confluence faster (5 to 7 days) than the human (12 to 15 days). It was possible to isolate into subcultures cells with small size (10 - 13 μm diameter), round-shape, scant cytoplasm, central prominent nucleus and with nucleolus, which formed colonies, maintaining their phenotype in a high proportion (77% - 83% and 91% in mouse and human, respectively), without showing changes in their morphology during almost 7 months in the mouse cells, and a month and a half in the human. These results demonstrate that the selection, the isolation, and the conditioned mediums allowed population increases of bulge cells and indicate that cultured cells may retain their sternness in that they maintained their phenotypic characteristics, expressed specific markers for SCs, and showed a high proliferative capacity for long periods. Hair follicles, in mice and humans, are important repositories of multipotent stem cells, due to their tendency to differentiate into keratinocytes. Human HFSCs, obtained by depilation, preserve their potential for proliferation and prove to be easily accessible. This suggests that the bulge cells may present an alternative source of autologous stem cells for tissue engineering and regenerative medicine.
Enock Matovu, Andrew Edielu, James Ojom, Ann Nanteza, Charles Drago Kato, Sylvain Biéler, Joseph Mathu Ndung’U
Microscopy Research, Volume 07, pp 1-9; doi:10.4236/mr.2019.71001

Diagnosis of Trypanosoma brucei rhodesiense human African trypanosomiasis requires demonstration of parasites in body fluids by microscopy. The microscopy methods that are routinely used are difficult to deploy in resource-limited settings due to practical challenges, including lengthy and tedious procedures, and the need for specific equipment to centrifuge samples in glass capillary tubes. We report here on a study that was conducted in a rural region of eastern Uganda to evaluate new methods that take advantage of a field-deployable LED fluorescence microscope. Examination of acridine orange-stained blood smears by LED fluorescence microscopy resulted in a diagnostic accuracy that was similar to that of routine methods, while the time needed to identify parasites was shortened significantly. These findings make these new microscopy methods attractive alternatives to procedures that are currently used for diagnosis of T. b. rhodesiense human African trypanosomiasis.
Shradhanjali Behera, Pramod Chandra Mishra, Shyamasree Ghosh, Chandan Goswami, Biswajit Mallick
Microscopy Research, Volume 07, pp 11-25; doi:10.4236/mr.2019.72002

Acid rain (AR) has been reported to induce stress in plants affecting its productivity, growth, flowering and physiology. The molecular changes induced in plants due to the effect of acid rain or acid induced orientation or chloroplast streaming remains largely unknown. Therefore, in the current study we report for the first time the static and permanent changes in the cell of the medicinal plant Bacopa monnieri L. due to sulphur-simulated acid rain (S-SiAR). AR induced effects witnessed by the reduction of the size of starch granules and chloroplast, amount of the granules per unit area, dissolving cell walls, breaking the normal fiber, salt-induced strain in the various components of the cell. Effect of starch granule and chloroplast due to S-SiAR was analyzed using light, confocal and scanning electron microscopic techniques. The elements viz. potassium and magnesium present in the chloroplasts reveal acidic pH due to effect of S-SiAR observed by the ionization of Mg and K (to Mg2+ and K+), in which K+ induced by the effects of S-SiAR revealed a net negative Nernst potential of about -87.55 mV. Calcium is mainly present on the cell walls and responsible for binding of starch granules become ionized to Ca2+ on interacting with AR indicated by the altered Nernst potential of +137.04 mV. A net potential difference may cause the above streaming of chloroplast towards the large starch granules. From this study, we report AR-induced physiological changes in medicinal plant Bacopa monnieri L. for the first time.
Jeffesson De Oliveira-Lima, Bruno Fiorelini Pereira, João Rodolfo Tuckumantel Valim, Thiago Gazoni, Dimitrius Leonardo Pitol, Flavio Henrique Caetano
Microscopy Research, Volume 07, pp 27-38; doi:10.4236/mr.2019.73003

Baccharis dracunculifolia, popularly known in Brazil as “alecrim-do-campo”, is widely recognized for its therapeutic potential. The extract of its leaves is used for liver problems, stomach disorders and others. The objective of the present study was to perform a histochemical analysis of curimbata fish livers to evaluate the potential effects and risks of the ingestion of B. dracunculifolia. Thirty-two animals were divided into two experimental groups in duplicate: Control group (regular food) and B. dracunculifolia Treated group (food added with B. dracunculifolia). The fishes were collected on the 14th and 21st days after the treatment period of 21 days. The histological alterations were evaluated using the semiquantitative methods Mean Value of Alterations (MVA), Histopathological Alteration Index (HAI) and Image J®. HAI and MAV showed that the extract caused slight but statistically significant damages, widely distributed throughout the organ. The results showed significant hepatic alterations caused by the ingestion of B. dracunculifolia extract.
Faizul Mohammad Kamal, Nazrul Islam Khan
Microscopy Research, Volume 07, pp 39-46; doi:10.4236/mr.2019.74004

Microspheres of Al have been successfully fabricated utilizing electromigration using sudden change in geometrical shape of a specimen. The experimental sample was a passivated Al line with a hole at the transitional area of the sample. The hole was used to control the accumulation and discharge process. The formation of the microsphere is enhanced by controlling temperature and current density. The atomic flux was increased with the increasing current density that was happened along the electron flow direction in the small region at the geometrical shape of the sample.
Héctor J. Finol, Héctor Luis Osorio-Vega, Radharani Dorta-Ledezma, Antonio Roschman-González, Blanca Muller, Israel Montes de Oca
Microscopy Research, Volume 06, pp 1-7; doi:10.4236/mr.2018.61001

Muscle biopsies from two female patients with systemic sclerosis (SS) and an inflammatory myopathy were studied ultrastructurally in relation to the possible presence of apoptosis in skeletal muscle fibers. Undergoing apoptosis showed characteristic morphological features of this process, including chromatin aggregation as well as nuclear and sarcoplasmic partition into membrane bound-vacuoles (apoptotic bodies) which contained autophagosomes, mitochondria, isolated myofilaments and nuclear material. Vacuoles exhibited different diameters and were covered by single membranes, appearing beneath basement membrane. Apoptosis occurred in some fiber segments as in necrosis or included whole atrophied fibers. These results indicate that apoptosis coexists with necrosis in the inflammatory myopathy of SS.
Néstor Usiel Lara-Jara, Gabriel Fernando Romo-Ramírez, María Del Pilar Goldaracena-Azuara, Antonio Aragón-Piña, Claudia Butrón-Téllez Girón, María Verónica Méndez-González, Ana María González-Amaro
Microscopy Research, Volume 06, pp 9-18; doi:10.4236/mr.2018.62002

Provisional prosthetic restoration materials are exposed to oral cavity producing on the surface biofilm where different factors such as surface roughness and porosity can condition their formation and organization and can create stagnation areas that promote the bonding of organic particles, thus facilitating the formation and maturation of the biofilm. The purpose of this study was to compare surface roughness of two provisional prosthetic restorations materials and their bacterial susceptibility. In this study, two provisional restoration materials were used in two groups, A polymethyl methacrylate acrylic (NicTone MDC DENTAL) and B bis-acryl resin (Protemp 4 ESPE 3M). A total of 80 samples (40 samples of each material) were in thick plates of 10 × 10 mm and 2 mm high. 20 samples of each material were polished, while 20 were left unpolished. Subsequently, the samples were observed by Atomic Force Microscopy for their evaluation of surface roughness. The values were analyzed with t-test, Mann-Whitney U test and Kruskal Wallis test. The samples were microbiologically inoculated with the strains obtained and identified from a provisional polymethyl methacrylate acrylic restoration in a patient, in order to observe bacterial adhesion using a Scanning Electron Microscope. Two strains, Enterococcus faecalis and Pseudomona luteola, were identified. The presence of the microorganisms was observed on the surface of both materials, either polished or unpolished, with a lower level of microorganism adhesion found on the bis-acrylic resin. There was a significant difference about surface roughness in the groups A and B with p -8). We found that the polished bis-acrylic resin showed lower surface roughness and bacterial adhesion in comparison with the polymethyl methacrylate.
Bélgica J. Molina, Elda Giansante, Héctor J. Finol
Microscopy Research, Volume 06, pp 19-29; doi:10.4236/mr.2018.63003

The skin contains various populaions of stem cells, but its characterization has been hampered by lack of markers and unclear location. The hair follicle has a niche for stem cells called a “bulge” which acts as a reservoir of multipotent stem cells. In the study reported here, an immunohistochemical and immunofluorescence analysis was performed on mouse and human tissues in order to determine the possible presence of stem cells of hair follicle through cytokeratin 15 (CK15), CD34, and CD200 markers identified as crucial to the stem cells and to identify the bulge region. Mouse (n = 7) and human (n = 7) skin samples were used. The expression of proteins was determined by the indirect immunoperoxidase technique and a secondary antibody bound to a fluorochrome. The specificity of staining was evaluated by negative controls. The results revealed that the stem cells associated with CD34 and CD200 antibodies were differentially expressed in the interfollicular epidermis, sebaceous glands, and bulge region, indicating that, in mice, CD34 and, in humans, CD200 are more specific than CK15 in detecting bulge cells. It also suggests that CD34 is specific for mouse bulge cells, while CD200 might have specificity for progenitor cells and partially differentiated cells in humans.
Back to Top Top