Planta Medica

Journal Information
ISSN / EISSN : 0032-0943 / 1439-0221
Published by: Thieme Medical Publishers (10.1055)
Total articles ≅ 24,707
Current Coverage
SCOPUS
SCIE
LOCKSS
MEDICUS
MEDLINE
PUBMED
Archived in
EBSCO
SHERPA/ROMEO
Filter:

Latest articles in this journal

Dan Li, Yuanfeng Lyu, Jiajia Zhao, Xiaoyu Ji, Yufeng Zhang,
Published: 14 September 2021
Abstract:
Although Polygoni Multiflori Radix (PMR) has been widely used as a tonic and an anti-aging remedy for centuries, the extensively reported hepatotoxicity and potential kidney toxicity hindered its safe use in clinical practice. To better understand its toxicokinetics, the current study was proposed, aiming to evaluate the biodistributions of the major PMR components including 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucopyranoside (TSG), emodin, emodin-8-O-β-D-glucopyranoside (EMG) and physcion as well as their corresponding glucuronides following bolus and multiple oral administrations of PMR to rats. Male Sprague-Dawley rats received a bolus dose or 21 days of oral administrations of PMR concentrated granules at 4.12 g/kg (equivalent to 20.6 g/kg raw material). Fifteen minutes after bolus dose or the last dose on day 21, rats were sacrificed and the blood, liver, and kidney were collected for the concentration determination of both parent form and glucuronides of TSG, emodin, EMG, and physcion by HPLC-MS/MS. Among all the tested analytes, TSG, EMG, EMG glucuronides in liver and TSG, EMG, as well as all the glucuronides of these analytes in the kidney demonstrated the most significant accumulation after multiple doses. Moreover, the levels of the parent analytes were all significantly higher in liver and kidney in comparison to their plasma levels. Strong tissue binding of all four analytes and accumulation of TSG, EMG, and EMG glucuronides in the liver and TSG, EMG, as well as the glucuronides of all four analytes in the kidney after multiple dosing of PMR were considered to be associated with its toxicity.
Huan Du, Tong Xu, Huan Yi, Xinmei Xu, Chengcheng Zhao, Yiman Ge, ,
Published: 14 September 2021
Abstract:
The dried stem bark of Berberis kansuensis is a commonly used Tibetan herbal medicine for the treatment of diabetes. Its main chemical components are alkaloids, such as berberine, magnoflorine and jatrorrhizine. However, the role of gut microbiota in the in vivo metabolism of these chemical components has not been fully elucidated. In this study, an ultra-high performance liquid chromatography method coupled with Orbitrap mass spectrometry (UHPLC-Orbitrap-MS) technology was applied to detect and identify prototype components and metabolites in rat intestinal contents and serum samples after oral administration of a B. kansuensis extract. A total of 16 prototype components and 40 metabolites were identified. The primary metabolic pathways of the chemical components from B. kansuensis extract were demethylation, desaturation, deglycosylation, reduction, hydroxylation, and other conjugation reactions including sulfation, glucuronidation, glycosidation, and methylation. By comparing the differences of metabolites between diabetic and pseudo-germ-free diabetic rats, we found that the metabolic transformation of some chemical components in B. kansuensis extract such as bufotenin, ferulic acid 4-O-β-D-glucopyranoside, magnoflorine, and 8-oxyberberine, was affected by the gut microbiota. The results revealed that the gut microbiota can affect the metabolic transformation of chemical constituents in B. kansuensis extract. These findings can enhance our understanding of the active ingredients of B. kansuensis extract and the key role of the gut microbiota on them.
Published: 14 September 2021
Abstract:
Medicinal plants play an important dual role in the context of the heterologous expression of high-value pharmaceutical products. On the one hand, the classical biochemical and modern omics approaches allowed for the discovery of various genes encoding biosynthetic pathways in medicinal plants. Recombinant DNA technology enabled introducing these genes and regulatory elements into host organisms and enhancing the heterologous production of the corresponding secondary metabolites. On the other hand, the transient expression of foreign DNA in plants facilitated the production of numerous proteins of pharmaceutical importance. This review summarizes several success stories of the engineering of plant metabolic pathways in heterologous hosts. Likewise, a few examples of recombinant protein expression in plants for therapeutic purposes are also highlighted. Therefore, the importance of medicinal plants has grown immensely as sources for valuable products of low and high molecular weight. The next step ahead for bioengineering is to achieve more success stories of industrial-scale production of secondary plant metabolites in microbial systems and to fully exploit plant cell factoriesʼ commercial potential for recombinant proteins.
Melanie Deipenbrock, Francesca Scotti, Boris Mo, ,
Published: 14 September 2021
Abstract:
Orthosiphon stamineus leaves (Java tea) extract is traditionally used for the treatment of urinary tract infections. According to recent in vitro data, animal infection studies, and transcriptomic investigations, polymethoxylated flavones from Java tea exert antiadhesive activity against uropathogenic Escherichia coli (UPEC). This antiadhesive activity has been shown to reduce bladder and kidney lesion in a mice infection model. As no data on the antivirulent activity of Java tea intake on humans are available, a biomedical study was performed on 20 healthy volunteers who self-administered Orthosiphon infusion (4 × 3 g per day, orally) for 7 days. The herbal material used for the study conformed to the specification of the European Pharmacopoeia, and ultra high-performance liquid chromatography (UHPLC) of the infusion showed rosmarinic acid, caffeic acid, and cichoric acid to be the main compounds aside from polymethoxylated flavones. Rosmarinic acid was quantified in the tea preparations with 243 ± 22 µg/mL, indicating sufficient reproducibility of the preparation of the infusion. Urine samples were obtained during the biomedical study on day 1 (control urine, prior to Java tea intake), 3, 6 and 8. Antiadhesive activity of the urine samples was quantified by flowcytometric assay using pre-treated UPEC NU14 and human T24 bladder cells. Pooled urine samples indicated significant inhibition of bacterial adhesion on day 3, 6 and 8. The urine samples had no influence on the invasion of UPEC into host cells. Bacterial proliferation was slightly reduced after 24 h incubation with the urine samples. Gene expression analysis (qPCR) revealed strong induction of fitness and motility gene fliC and downregulation of hemin uptake system chuT. These data correlate with previously reported datasets from in vitro transcriptomic analysis. Increased bacterial motility was monitored using a motility assay in soft agar with UPEC UTI89. The intake of Java tea had no effect on the concentration of Tamm-Horsfall Protein in the urine samples. The present study explains the antiadhesive and anti-infective effect of the plant extract by triggering UPEC from a sessile lifestyle into a motile bacterial form, with reduced adhesive capacity.
Freyr Jóhannsson, Paulina Cherek, Maonian Xu, Óttar Rolfsson,
Published: 14 September 2021
Abstract:
The lichen compound protolichesterinic acid (PA) has an anti-proliferative effect against several cancer cell lines of different origin. This effect cannot be explained by the known inhibitory activity of PA against 5- and 12-lipoxygenases. The aim was therefore to search for mechanisms for the anti-proliferative activity of PA. Two cancer cell lines of different origin, both sensitive to anti-proliferative effects of PA, were selected for this study, T-47D from breast cancer and AsPC-1 from pancreatic cancer. Morphological changes were assessed by transmission electron microscopy, HPLC coupled with TOF spectrometry was used for metabolomics, mitochondrial function was measured using the Agilent Seahorse XFp Real-time ATP assay and glucose/lactate levels by radiometry. Levels of glutathione, NADP/NADPH and reactive oxygen species [ROS] were measured by luminescence. Following exposure to PA both cell lines showed structural changes in mitochondria that were in line with a measured reduction in oxidative phosphorylation and increased glycolysis. These changes were more marked in T-47D, which had poorer mitochondrial function at baseline. PA was processed and expelled from the cells via the mercapturic pathway, which consumes glutathione. Nevertheless, glutathione levels were increased after 24 hours of exposure to PA, implying enhanced synthesis. Redox balance was not much affected and ROS levels were not increased. We conclude that PA is metabolically processed and expelled from cells, leading indirectly to increased glutathione levels with minimal effects on redox balance. The most marked effect was on mitochondrial structure and metabolic function implying that effects of PA may depend on mitochondrial fitness.
Kiep Minh Do, Min-Kyoung Shin, Takeshi Kodama, Nwet Nwet Win, Prema Prema, Hien Minh Nguyen, Yoshihiro Hayakawa,
Published: 2 September 2021
Abstract:
Three new flavanols, (2R,3S)-7-methoxy-flavan-3-ol (1), (2R,3S)-7-hydroxy-flavan-3-ol (2), and (2R,3S)-2′-hydroxy-7-methoxy-flavan-3-ol (3), together with two known flavans (4 and 5), were isolated from the chloroform extract of Crinum asiaticum. Their structures were elucidated by various spectroscopic methods, including 1D and 2D NMR, HR-ESI-MS, and CD data. The isolated compounds 1 and 3−5 showed inhibitory activity toward LPS-induced nitric oxide (NO) production. Further investigation of the NF-κB pathway mechanisms indicated that 1 and 3−5 inhibited the LPS-induced IL-6 production and p65 subunit phosphorylation of NF-κB in RAW264.7 cells, with an effective dose of 10 µM.
Thaise Boeing, , Luisa Mota da Silva,
Published: 2 September 2021
Abstract:
This review focuses on the efficacy of herbal medicines for managing dyspepsia in humans and animals. Searches were conducted on the PubMed, Science Direct, and Medline databases, for publications in the last 3 years. In each database, the search terms used consisted of the 2 key terms describing the disorder and subtypes plus each of the terms relating to the therapy. The key terms used were “natural product” and “medicinal plant” in a cross-over with “dyspepsia” and “functional dyspepsia” (i.e., gastroprotection, Helicobacter pylori infection, prokinetic). We included all human and animal studies on the effects of herbal medicines reporting the key outcome of dyspepsia symptoms. Preclinical studies using critically validated models showed that most medicinal plants with gastroprotective action had antioxidant, anti-inflammatory, anti-apoptotic, and antisecretory effects. Moreover, several species displayed anti Helicobacter pylori and prokinetic efficacy. The data availability of controlled clinical studies is currently minimal. The use of different methodologies and the minimal number of patients raise doubts about the effects of these preparations. Only adequate clinical trials with scientifically validated methods can determine whether different herbal medicines can be used as viable alternatives to the conventional pharmacological treatments used to control dyspepsia symptoms.
Panagiota-Iro Chintiroglou, Nikos Krigas, Paschalina Chatzopoulou,
Published: 2 September 2021
Abstract:
An HPLC-PDA method was developed for the determination of the flavonoids in the flowers of Primula veris from Epirus, Greece. The aim was to investigate the chemical content of the over-harvested P. veris populations of Epirus and to develop and optimize an extraction protocol to allow fast, exhaustive, and repeatable extraction. Qualitative analysis revealed that the P. veris flowers from Epirus were particularly rich in flavonoids, especially flavonol triglycosides including derivatives of quercetin, isorhamnetin, and kaempferol. A phytochemical investigation of a 70% hydromethanolic extract from the flowers afforded a new flavonoid, namely, isorhamnetin-3-Ο-β-glucopyranosyl-(1 → 2)-β-glucopyranosyl-(1 → 6)-β-glucopyranoside, which is also the main constituent of the flower extracts. Its structure elucidation was carried out by means of 1D and 2D NMR and mass spectrometry analyses. The HPLC-PDA method was developed and validated according to the International Council for Harmonisation guidelines. Since the main flavonol glycoside of the plant is not commercially available, rutin was used as a secondary standard and the response correction factor was determined. Finally, the overall method was validated for precision (% relative standard deviation ranging between 1.58 and 4.85) and accuracy at three concentration levels. The recovery ranged between 93.5 and 102.1% with relative standard deviation values < 5%, within the acceptable limits. The developed assay is fast and simple and will allow for the quality control of the herbal drug.
Published: 2 September 2021
Abstract:
Seeds of Strophanthus species are known as a source of rapid-acting cardenolides. These water-soluble glycosides are listed as the sole critical constituents of this raw herbal drug. A non-standard cardioprotective medication with ouabain-containing oral remedies has become popular in Europe as a result of the withdrawal of corresponding registered drugs from the market. However, the bioequivalence of pure ouabain solutions, tinctures, and home-made extracts from Strophanthus seeds is unknown. Thus, this study aimed to update the information on the composition of Strophanthus seeds used for this purpose. The distribution of two main saponins and about 90 previously unreported compounds, tentatively identified as saponins in eleven Strophanthus species, was systematically evaluated by ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) and -MS/MS. Seeds of S. gratus were selected to isolate the dominant unreported triterpenoids, bidesmosides of echinocystic and oleanolic acid. Their structures were established by HRMS, MS/MS, as well as by NMR techniques. The total saponin content, estimated by UHPLC-MS, was up to 1%. The detected saponins could influence the peroral bioavailability of hardly absorbable Strophanthus cardenolides and exhibit their own activity. This finding may be relevant when Strophanthus preparations (containing both saponins and cardiac glycosides) are used, particularly when homemade preparations are administered.
Luc Pieters
Published: 25 August 2021
Planta Medica, Volume 87, pp 736-737; https://doi.org/10.1055/a-1484-9805

Abstract:
Publication Date:25 August 2021 (online) © 2021. Thieme. All rights reserved. Georg Thieme Verlag KGRüdigerstraße 14, 70469 Stuttgart, Germany
Back to Top Top