Smart Grid and Renewable Energy

Journal Information
ISSN / EISSN : 2151-481X / 2151-4844
Published by: Scientific Research Publishing, Inc. (10.4236)
Total articles ≅ 350
Archived in
SHERPA/ROMEO
Filter:

Latest articles in this journal

Derek Ajesam Asoh, Brice Damien Noumsi, Edwin Nyuysever Mbinkar
Smart Grid and Renewable Energy, Volume 13, pp 89-108; https://doi.org/10.4236/sgre.2022.135006

Abstract:
Maximum Power Point Tracking (MPPT) is an important process in Photovoltaic (PV) systems because of the need to extract maximum power from PV panels used in these systems. Without the ability to track and have PV panels operate at its maximum power point (MPP) entails power losses; resulting in high cost since more panels will be required to provide specified energy needs. To achieve high efficiency and low cost, MPPT has therefore become an imperative in PV systems. In this study, an MPP tracker is modeled using the IC algorithm and its behavior under rapidly changing environmental conditions of temperature and irradiation levels is investigated. This algorithm, based on knowledge of the variation of the conductance of PV cells and the operating point with respect to the voltage and current of the panel calculates the slope of the power characteristics to determine the MPP as the peak of the curve. A simple circuit model of the DC-DC boost converter connected to a PV panel is used in the simulation; and the output of the boost converter is fed through a 3-phase inverter to an electricity grid. The model was simulated and tested using MATLAB/Simulink. Simulation results show the effectiveness of the IC algorithm for tracking the MPP in PV systems operating under rapidly changing temperatures and irradiations with a settling time of 2 seconds.
Dabilgou Téré, Tubreoumya Guy Christian, Haro Kayaba, Bagre Boubou, Sandwidi Sayouba, Daho Tizane, Koulidiati Jean, Sanogo Oumar, Zeghmati Belkacem, Bere Antoine
Smart Grid and Renewable Energy, Volume 13, pp 28-54; https://doi.org/10.4236/sgre.2022.132003

Abstract:
The accelerated depletion of oil reserves and the often exorbitant cost of fossil fuels contribute to the development of fuels from renewable sources. The objective of this work is to analyze the influence of the properties of renewable fuels on their evaporation in natural convection, their combustion and their use in internal combustion engines. A summary of the various numerical and experimental works from the literature has been presented in this work. This work focuses on the numerical modelling of the natural convection evaporation of an isolated drop of a liquid fuel in natural convection. The transfers in the liquid and vapour phases are described by the conservation equations of mass and species, momentum and energy. The main feature of this work is the consideration of advection, azimuthal angle and thickness of the vapour phase of the drop during evaporation of the drop.
Abdelbaki Abdallah, Seif Eddine Bendaoudi, Houcine Naim, Samir Habibi
Smart Grid and Renewable Energy, Volume 13, pp 109-119; https://doi.org/10.4236/sgre.2022.135007

Abstract:
The flywheel energy storage system (FESS) has been rediscovered a few years ago, it is a rotary system allowing the storage and restoration of kinetic energy which has an inertia wheel. The current paper investigates an assembly design of the flywheel for durable, maintainable and optimal performance. The designed model is based on a geometrical configuration which was already studied in a previous research. Using SolidWorks modelling and simulation capabilities, the model was designed and investigated with different combination of materials. A total of 16 combinations has been tested at high speed and then analyzed in order to optimize the effect of materials on the efficiency of the flywheel and particularly on the specific energy and stress Von-Mises stress. This research shows that a good geometric design of the flywheel and selection of combination of two materials can improve its energy storage capacity. Maximum specific energy of 55,764.538 J/Kg, is observed in the flywheel of combined material which is about 13% higher than flywheel of a single material.
Mawunyo Simon Pierre Kitegi, Yendoube Lare, Ousmane Coulibaly
Smart Grid and Renewable Energy, Volume 13, pp 17-27; https://doi.org/10.4236/sgre.2022.132002

Abstract:
Potential of green hydrogen producing from biomass, solar and wind in Togo has been performed. The availability of these three resources has been depicted with maps showing them per cantons in Togo, thus, by using the datasets from ESA Biomass Climate Change Initiative, the global solar atlas and the global wind atlas. The conversions rates used were: for solar resource, 3% of land was allocated for the analysis after removing the exclusions with a conversion rate of 52.5 kWh/kg of hydrogen; for biomass hydrogen, the conversion rate of 13.4 kg BS/kg H2 was assumed. Wind resources at 50 m above ground were not sufficient to evaluate the potential as it is lower than class 3 winds. QGIS version 3.6.4 and R version 4.0.4 were used. Results showed that biomass is the leading resource for producing green hydrogen from renewable energy resources; with good impact in these two cantons: Bassar, Gobe/ Eketo/Gbadi N’Kugna. However, this resource is still decreasing and in some cantons it is null.
Alberto Tama
Smart Grid and Renewable Energy, Volume 13, pp 55-74; https://doi.org/10.4236/sgre.2022.133004

Abstract:
For a long time now, humanity has been facing the phenomenon known as “climate change”, a major challenge of which we must be aware of what we are doing so as not to affect ourselves or future generations. It is evident that, if what is sought is a sustainable energy future, the current energy model implemented in certain countries and regions of the world is not the most adequate and makes the achievement of this goal unfeasible. This situation threatens to greatly alter our ecosystems and our social structures, and one of the key actions to mitigate it is, undeniably, the generalization of the use of renewable energy sources; and specifically, the non-conventional sources, referring to solar and wind, technologies that comply with the principle of energy complementarity; however, there are other possible solutions such as the deployment of programs that consider efficient cooking technologies; involving with it is everything related to energy security and equity, as well as environmental protection. In this article, as a technology to be considered to reduce and mitigate the Greenhouse Gases (GHG) emissions, an analysis of the efficiency assessment of electric induction cooktops and the determination of their potential energy savings are carried out. The impact of these results is taken into consideration and a series of conclusions and recommendations for improvement are issued.
Derek Ajesam Asoh, Edwin Nyuysever Mbinkar, Albert Nouck Moutlen
Smart Grid and Renewable Energy, Volume 13, pp 1-16; https://doi.org/10.4236/sgre.2022.131001

Abstract:
This study presents an intelligent approach for load frequency control (LFC) of small hydropower plants (SHPs). The approach which is based on fuzzy logic (FL), takes into account the non-linearity of SHPs—something which is not possible using traditional controllers. Most intelligent methods use two- input fuzzy controllers, but because such controllers are expensive, there is economic interest in the relatively cheaper single-input controllers. A non- linear control model based on one-input fuzzy logic PI (FLPI) controller was developed and applied to control the non-linear SHP. Using MATLAB/Si- mulink SimScape, the SHP was simulated with linear and non-linear plant models. The performance of the FLPI controller was investigated and compared with that of the conventional PI/PID controller. Results show that the settling time for the FLPI controller is about 8 times shorter; while the overshoot is about 15 times smaller compared to the conventional PI/PID controller. Therefore, the FLPI controller performs better than the conventional PI/PID controller not only in meeting the LFC control objective but also in ensuring increased dynamic stability of SHPs.
Phyllis Makena Mwenda, Walter Njoroge, Sarroney Mirenga, Dickson Mwenda Kinyua
Smart Grid and Renewable Energy, Volume 13, pp 75-87; https://doi.org/10.4236/sgre.2022.134005

Abstract:
The copper indium gallium selenium (CIGS) thin film is widely acknowledged as the most promising material for photovoltaic applications. Mainly due to appealing chemical and physical structures properties, low fabrication cost, high efficiency, and uncomplicated integration especially with the advancement in the use of the flexible substrate. Promising results have been achieved in CIGS-based solar cells in the last few years and these devices could be key in unlocking the potential of green energy. Therefore, it is necessary to understand the parameters that are critical to improving the efficiency of these devices. Parameters such as doping concentration, thickness, substrates, and energy bandgap. In this review, we comprehensively report on these parameters with an aim of showing the recent progress on the various methods used to optimize them, all geared towards efficient and low cost solar cells for PV applications.
Vincent Kwame Osei-Appiah, Jones Lewis Arthur
Smart Grid and Renewable Energy, Volume 13, pp 121-136; https://doi.org/10.4236/sgre.2022.136008

Abstract:
The inability to achieve the target of universal access to electricity is influenced by several factors including funding limitations, the use of obsolete equipment, power theft, and system losses confronting the electricity distribution services of the Electricity Company of Ghana Limited (ECG). The study assessed the components of system losses within the ECG by determining and computing the percentage of system losses within ECG, examining the causes of both commercial and technical losses in ECG, and determining ways to improve energy efficiency by reducing system losses in the most cost-efficient manner. The study adopted deductive reasoning and a quantitative approach to guide data collection and analysis of the research output. A sample of 345 technical and non-technical staff of ECG in the Greater Accra Metropolis was selected from a population of 2500. Purposive, simple random, and cluster sampling techniques were used in identifying and accessing respondents for the study. Descriptive statistics were applied to measure central tendency and degrees of dispersion and the Relative Importance Index (RII) to predict criterion and predictor variables. The impact of low voltage network losses can adversely contribute to technical losses (20%) and reduce energy efficiency in power or electricity distribution companies. Non-technical losses are mainly caused by illegal connections, meter problems, and billing problems. Each of the non-technical losses contributes a maximum of 10% to system losses. Contributors to system losses at ECG are ranked first for power theft and least for lack of incentives. System losses at ECG include metering inaccuracies, bad workmanship, unmetered supply, and lengthy distribution lines, each recording a mean value of above 3.5. Measures to improve monitoring of the networks and systems at ECG and discourage power theft should include an extensive quantification, patrolling, and inspection of the entire network to assess the extent of the network and conditions relevant for the placement of systematically planned maintenance programmes.
Alberto Tama
Smart Grid and Renewable Energy, Volume 12, pp 203-230; https://doi.org/10.4236/sgre.2021.1212012

Abstract:
Wind technology is considered to be among the most promising types of renewable energy sources, and due to high oil prices and growing concerns about climate change and energy security, it has been the subject of extensive considerations in recent years, including questions related to the relative sustainability of electricity production when the manufacturing, assembly, transportation and dismantling processes of these facilities are taken into account. The present article evaluates the environmental impacts, carbon emissions and water consumption, derived from the production of electric energy of the Villonaco wind farm, located in Loja, Ecuador, during its entire life cycle, using the Life Cycle Analysis for this purpose. Finally, it is concluded that wind energy has greater environmental advantages since it has lower values of carbon and water footprints than other energy sources. Additionally, with the techniques Cumulative Energy Demand and Energy Return on Investment, sustainability in the production of electricity from wind power in Ecuador is demonstrated; and, that due to issues of vulnerability to climate change, the diversification of its energy mix is essential considering the inclusion of non-conventional renewable sources such as solar or wind, this being the only way to reduce both the carbon footprint and the water from the energy supply.
Husain Alsamamra, Iyad Isaila, Jawad Shoqeir
Smart Grid and Renewable Energy, Volume 12, pp 17-29; https://doi.org/10.4236/sgre.2021.122002

Abstract:
Energy demand overall the world increases rapidly in various sectors, one of the highest energy consumption sector is the building sector. Installation of PV systems is one of the solutions to cover this demand and will serve in promoting energy efficiency in the Palestinian municipalities in decreasing the electricity bill, and using the saved money in constructing new projects and improving the level of services provided to citizens. In this work, Al-Dahriya municipality has been taken as a case study. The municipality installed 20 KW of photovoltaic panels on the roof of the main building in 2015. The cumulative values for one year after installation the PV system represent a total consumed electricity by the main building was 71,506 kw, while the total generated power by the PV system that transferred to building was 32,664 kw, and 5323 kw exported to the grid with total generated power by PV system was 37,987 kw. The participation of energy that produced by the photovoltaic system is 53.12% of the total power demand of the building. The value of generated power varies between the summer months and winter months through the difference of the solar radiation intensity and the number of shinning hours, the largest reading of solar radiation intensity is in the summer months. The study ensures the importance of applying selected thermal insulation materials in order to decrease the heat transfer through the boundary wall of the building. Furthermore, this study covers the other buildings and utilities of municipality and recommended with certain issues in order to promote energy efficiency.
Back to Top Top