Electronics

Journal Information
ISSN / EISSN : 2079-9292 / 2079-9292
Current Publisher: MDPI AG (10.3390)
Total articles ≅ 5,952
Current Coverage
SCOPUS
SCIE
INSPEC
DOAJ
Archived in
SHERPA/ROMEO
Filter:

Latest articles in this journal

Published: 18 June 2021
Electronics, Volume 10; doi:10.3390/electronics10121460

Abstract:
In recent years the ever-expanding internet of things (IoT) is becoming more empowered to revolutionize our world with the advent of cutting-edge features and intelligence in an IoT ecosystem. Thanks to the development of the IoT, researchers have devoted themselves to technologies that convert a conventional home into an intelligent occupants-aware place to manage electric resources with autonomous devices to deal with excess energy consumption and providing a comfortable living environment. There are studies to supplement the innate shortcomings of the IoT and improve intelligence by using cloud computing and machine learning. However, the machine learning-based autonomous control devices lack flexibility, and cloud computing is challenging with latency and security. In this paper, we propose a rule-based optimization mechanism on an embedded edge platform to provide dynamic home appliance control and advanced intelligence in a smart home. To provide actional control ability, we design and developed a rule-based objective function in the EdgeX edge computing platform to control the temperature states of the smart home. Compared to cloud computing, edge computing can provide faster response and higher quality of services. The edge computing paradigm provides better analysis, processing, and storage abilities to the data generated from the IoT sensors to enhance the capability of IoT devices concerning computing, storage, and network resources. In order to satisfy the paradigm of distributed edge computing, all the services are implemented as microservices. The microservices are connected to each other through REST APIs based on the constrained IoT devices to provide all the functionalities that accomplish a trade-off between energy consumption and occupant-desired environment setting for the smart home appliances. We simulated our proposed system to control the temperature of a smart home; through experimental findings, we investigated the application against the delay time and overall memory consumption by the embedded edge system of EdgeX. The result of this research work suggests that the implemented services operated efficiently in the raspberry pi 3 hardware of IoT devices.
Published: 18 June 2021
Electronics, Volume 10; doi:10.3390/electronics10121461

Abstract:
The evolution of power electronics led to rapid development in wireless charging technology; as a result, a single active switch topology was introduced. The present market utilizes inductive wireless power transfer (IPT); because of the disadvantages of cost, size, and safety concerns, research on wireless power transfer was diverted towards capacitive wireless power transfer (CPT). This paper studies the optimal impedance tracking of the capacitive wireless power transfer system for maximum power transfer. Compared to prior methods developed for maximum power point tracking in power control, this paper proposes a new approach by means of finding impedance characteristics of the CPT system for a certain range of frequencies. Considering the drone battery as an application, a single active switch Class-E2 resonant converter with circular coupling plates is utilized. Impedance characteristics are identified with the help of equations related to the input and resonant impedance. The impedance tracking is laid out for various resonant inductors, and the difference in current peak is observed for each case. Simulations verify and provide additional information on the reactive type. Additionally, hardware tests provide the variation of input current and output voltage for a range of frequencies from 70 kHz to 300 kHz. Efficiency at the optimal impedance points for a resonant inductor with 50 μH and 100 μH are tested and analyzed. It is noted that the efficiency for a resonant inductor with 50 μH is 8% higher compared to the CPT with a 100 μH resonant inductor. Further hardware tests were performed to investigate the impact of frequency and duty cycle variation. Zero-voltage-switching (ZVS) limits have been discussed with respect to both frequency and duty cycle.
Published: 18 June 2021
Electronics, Volume 10; doi:10.3390/electronics10121464

Abstract:
DC/DC converters are widely used in photovoltaic (PV) systems to maximize the power drained from solar panels. As the power generated by a PV panel depends on the temperature and irradiance level, a converter needs to constantly modify its input resistance to remain at the maximum power point (MPP). The input resistance of a converter can be described by a simple equation that includes the converter load resistance and the duty cycle of the switching signal. The equation is sufficient for an ideal converter but can lead to incorrect results for a real converter, which naturally features some parasitic resistances. The goal of this study is to evaluate how the parasitic resistances of a converter influence its input resistance and if they are relevant in terms of MPPT system operation.
Published: 18 June 2021
Electronics, Volume 10; doi:10.3390/electronics10121465

Abstract:
This paper presents an invisible and robust watermarking method and its hardware implementation. The proposed architecture is based on the discrete cosine transform (DCT) algorithm. Novel techniques are applied as well to reduce the computational cost of DCT and color space conversion to achieve low-cost and high-speed performance. Besides, a watermark embedder and a blind extractor are implemented in the same circuit using a resource-sharing method. Our approach is compatible with various watermarking embedding ratios, such as 1/16 and 1/64, with a PSNR of over 45 and the NC value of 1. After Joint Photographic Experts Group (JPEG) compression with a quality factor (QF) of 50, our method can achieve an NC value of 0.99. Results from a design compiler (DC) with TSMC-90 nm CMOS technology show that our design can achieve the frequency of 2.32 GHz with the area consumption of 304,980.08 μm2 and power consumption of 508.1835 mW. For the FPGA implementation, our method achieved a frequency of 421.94 MHz. Compared with the state-of-the-art works, our design improved the frequency by 4.26 times, saved 90.2% on area and increased the power efficiency by more than 1000 fold.
Published: 18 June 2021
Electronics, Volume 10; doi:10.3390/electronics10121466

Abstract:
This paper presents a switched capacitor low-pass filter in a 28-nm fully depleted silicon on insulator CMOS technology for 77-GHz automotive radar applications. It is operated at a power supply as low as 1 V and guarantees 5-dB in-band voltage gain while providing out-of-band attenuation higher than 36 dB and a programmable passband up to 30 MHz. A double sampling technique is adopted, which allows high operating frequency to be achieved while saving power. Moreover, low-voltage biasing and common-mode feedback circuits are exploited to guarantee an almost rail-to-rail output voltage swing. The proposed filter provides an output 1-dB compression point as high as 8.7 dBm with a power consumption of 9 mW. To the authors’ knowledge, this is the first SC-based implementation of a low pass filter for automotive radar applications.
Published: 18 June 2021
Electronics, Volume 10; doi:10.3390/electronics10121468

Abstract:
We focus on the efficient modeling and optimization of the flow restoration in the spectrally-spatially flexible optical networks (SS-FONs) realized using a single mode fiber bundle. To this end, we study a two-phase optimization problem, which consists of: (i) the network planning with respect to the spectrum usage and (ii) the flow restoration after a failure aiming at maximizing the restored bit-rate. Both subproblems we formulate using the integer linear programming with two modeling approaches—the node-link and the link-path. We perform simulations divided into: (i) a comparison of the proposed approaches, (ii) an efficient flow restoration in SS-FONs—case study. The case study focuses on the verification whether the spectral-spatial allocation may improve the restoration process (compared to the spectral allocation) and on the determination of the full restoration cost (the amount of additional resources required to restore whole traffic) in two network topologies. The results show that the spectral-spatial allocation allows us to restore up to 4% more traffic compared to the restoration with only the spectral channels. They also reveal that the cost of the full traffic restoration depends on plenty of factors, including the overall traffic volume and the network size, while the spectral-spatial allocation allows us to reduce its value about 30%.
Published: 18 June 2021
Electronics, Volume 10; doi:10.3390/electronics10121470

Abstract:
This paper presents a proposal for potential bioelectrochemical power to gas stations. It consists of a two-level voltage source converter interfacing the electrical grid on the AC side and an electromethanogenesis based bioelectrochemical system (EMG-BES) working as a stacked module on the DC side. The proposed system converts CO2 and electrical energy into methane, using wastewater as the additional chemical energy input. This energy storage system can contribute to dampening the variability of renewables in the electrical network, provide even flexibility and grid services by controlling the active and reactive power exchanged and is an interesting alternative technology in the market of energy storage for big energy applications. The big challenge for controlling this system lays in the fact that the DC bus voltage of the converter has to be changed in order to regulate the exchanged active power with the grid. This paper presents a cascade approach to control such a system by means of combining external control loops with fast inner loops. The outer power loop, with a proportional-integral (PI) controller with special limitation values and anti-windup capability, is used to generate DC bus voltage reference. An intermediate loop is used for DC bus voltage regulation and current reference generation. A new proportional resonant controller is used to track the current reference. The proposed scheme has been validated through real-time simulation in OPAL OP4510.
Published: 18 June 2021
Electronics, Volume 10; doi:10.3390/electronics10121471

Abstract:
Data are important and ever growing in data-intensive scientific environments. Such research data growth requires data storage systems that play pivotal roles in data management and analysis for scientific discoveries. Redundant Array of Independent Disks (RAID), a well-known storage technology combining multiple disks into a single large logical volume, has been widely used for the purpose of data redundancy and performance improvement. However, this requires RAID-capable hardware or software to build up a RAID-enabled disk array. In addition, it is difficult to scale up the RAID-based storage. In order to mitigate such a problem, many distributed file systems have been developed and are being actively used in various environments, especially in data-intensive computing facilities, where a tremendous amount of data have to be handled. In this study, we investigated and benchmarked various distributed file systems, such as Ceph, GlusterFS, Lustre and EOS for data-intensive environments. In our experiment, we configured the distributed file systems under a Reliable Array of Independent Nodes (RAIN) structure and a Filesystem in Userspace (FUSE) environment. Our results identify the characteristics of each file system that affect the read and write performance depending on the features of data, which have to be considered in data-intensive computing environments.
Published: 18 June 2021
Electronics, Volume 10; doi:10.3390/electronics10121472

Abstract:
Maritime safety issues have aroused great attention, and it has become a difficult problem to use the sky-wave over-the-horizon radar system to locate foreign targets or perform emergency rescue quickly and timely. In this paper, a distributed multi-point sky-wave over-the-horizon radar system is used to locate marine targets. A positioning algorithm based on the Doppler frequency is proposed, namely, the two-step weighted least squares (2WLS) method. This algorithm first converts the WGS-48 geodetic coordinates of the transceiver station to spatial rectangular coordinates; then, introduces intermediate variables to convert the nonlinear optimization problem into a linear problem. In the 2WLS method, four mobile transmitters and four mobile receivers are set up, and the Doppler frequency is calculated by transmitting and receiving signals at regular intervals; it is proven that the 2WLS algorithm has always maintained a better positioning accuracy than the WLS algorithm as the error continues to increase with a certain ionospheric height measurement error and the Doppler frequency measurement error. This paper provides an effective method for the sky-wave over-the-horizon radar to locate maritime targets.
Published: 18 June 2021
Electronics, Volume 10; doi:10.3390/electronics10121458

Abstract:
At present, the tactile perception is essential for robotic applications when performing complex manipulation tasks, e.g., grasping objects of different shapes and sizes, distinguishing between different textures, and avoiding slips by grasping an object with a minimal force. Considering Deformable Linear Object manipulation applications, this paper presents an efficient and straightforward method to allow robots to autonomously work with thin objects, e.g., wires, and to recognize their features, i.e., diameter, by relying on tactile sensors developed by the authors. The method, based on machine learning algorithms, is described in-depth in the paper to make it easily reproducible by the readers. Experimental tests show the effectiveness of the approach that is able to properly recognize the considered object’s features with a recognition rate up to 99.9%. Moreover, a pick and place task, which uses the method to classify and organize a set of wires by diameter, is presented.
Back to Top Top