Quaternary Research

Journal Information
ISSN / EISSN : 0033-5894 / 1096-0287
Published by: Cambridge University Press (CUP) (10.1017)
Total articles ≅ 4,449
Current Coverage
Archived in

Latest articles in this journal

, Justina Gaižutytė, Vaidotas Valskys, Giedrė Vaikutienė
Quaternary Research pp 1-16; https://doi.org/10.1017/qua.2021.51

In conventional pollen analysis, usually one sediment core per basin is analyzed to reconstruct past environmental conditions. This approach does not consider spatial heterogeneity of pollen assemblages, and assumes that one analyzed location is representative of the whole basin. To improve the spatial resolution of fossil pollen studies, further knowledge of the factors influencing variations in pollen assemblages throughout a basin is needed. We examined the spatial heterogeneity of pollen assemblages from 45 lacustrine surface samples from a lake with relatively simple hydrology and compared this dense network of surface pollen samples with the Lithuanian State Forest Service arboreal vegetation database. Calculations of pollen productivity at different locations across the lake revealed variations in the behavior of a pollen-vegetation relationship model in different parts of the basin. Our findings suggest that the model underestimated pollen contributions from the lakeshore vegetation. We demonstrate that detailed investigations of surface pollen as a step prior to fossil pollen investigations can provide useful insights, including understanding the influence of sedimentation rate on modelling results and spatial variations in pollen composition, thus providing guidance for site selection for fossil pollen studies.
, Sharon A. Cowling,
Quaternary Research pp 1-19; https://doi.org/10.1017/qua.2021.54

Greenock Swamp wetland complex is one of few remaining natural wetlands in the Great Lakes region and, at 89 km2 in areal extent, is currently the largest hardwood swamp in southern Ontario, Canada. We present here pollen and sediment records from a kettle hole (Schmidt Lake) and adjacent Thuja occidentalis swamp to reconstruct regional paleoclimate and vegetation history, and to assess the timing and development of the swamp ecosystem and associated carbon stocks. Pollen-inferred paleoclimate reconstructions show the expected warming in the Early Holocene, and indicate the Mid-Holocene initiation of lake-effect snow. This enhanced snowfall may have maintained high water tables in the adjacent wetland since ca. 8300 years ago, promoting the establishment of a swamp dominated by Thuja occidentalis. Carbon accumulation rates in a >2-m-long peat core collected from a Thuja occidentalis stand adjacent to Schmidt Lake are 30–40 g C/m2/yr, which is higher than the average of northern high-latitude peatlands. Using topographic and hydrological parameters, we estimated that mean swamp peat thicknesses could exceed 2 m. Thus, this study encourages future investigations on temperate swamps from the perspective of hitherto underestimated Holocene carbon sinks and shows the importance of regional hydroclimate in supporting swamp ecosystems.
Manuel R. Palacios-Fest, Daron Duke, D. Craig Young, Jason D. Kirk, Charles G. Oviatt
Quaternary Research pp 1-19; https://doi.org/10.1017/qua.2021.49

Mollusk and ostracode assemblages from the distal Old River Bed delta (ORBD) contribute to our understanding of the Lake Bonneville basin Pleistocene-Holocene transition (PHT) wetland and human presence on the ORBD (ca. 13,000–7500 cal yr BP). Located on U.S. Air Force-managed lands of the Great Salt Lake Desert (GSLD) in western Utah, USA, the area provided 30 samples from 12 localities. The biological assemblages and the potential water sources using 87Sr/86Sr analyses showed wetland expansion and contraction across the PHT, including the Younger-Dryas Chronozone (YDC). The record reflects cold, freshwater conditions, which is uncharacteristic of the Great Salt Lake Desert, after recession of Lake Bonneville. Lymnaea stagnalis jugularis, Cytherissa lacustris, and possibly Candona sp. cf. C. adunca, an endemic and extinct species only reported from Lake Bonneville, suggest cold-water environments. Between 13,000–12,400 cal yr BP, a shallow lake formed, referred to as the Old River Bed delta lake, fed by Lake Gunnison, as shown by 87Sr/86Sr ratios of 0.71024–0.71063 in mollusk fossils collected at the ORBD, characteristic of the Sevier basin. These findings add paleoenvironmental context to the long-term use of the ORBD by humans in constantly changing wetland habitats between 13,000–9500 cal yr BP.
, Cathy Whitlock, Sabrina R. Brown
Quaternary Research pp 1-17; https://doi.org/10.1017/qua.2021.42

Changes in climate and fire regime have long been recognized as drivers of the postglacial vegetation history of Yellowstone National Park, but the effects of locally dramatic hydrothermal activity are poorly known. Multi-proxy records from Goose Lake have been used to describe the history of Lower Geyser Basin where modern hydrothermal activity is widespread. From 10,300 cal yr BP to 3800 cal yr BP, thermal waters discharged into the lake, as evidenced by the deposition of arsenic-rich sediment, fluorite mud, and relatively high δ13Csediment values. Partially thermal conditions affected the limnobiotic composition, but prevailing climate, fire regime, and rhyolitic substrate maintained Pinus contorta forest in the basin, as found throughout the region. At 3800 cal yr BP, thermal water discharge into Goose Lake ceased, as evidenced by a shift in sediment geochemistry and limnobiota. Pollen and charcoal data indicate concurrent grassland development with limited fuel biomass and less fire activity, despite late Holocene climate conditions that were conducive to expanded forest cover. The shift in hydrothermal activity at Goose Lake and establishment of the treeless geyser basin may have been the result of a tectonic event or change in hydroclimate. This record illustrates the complex interactions of geology and climate that govern the development of an active hydrothermal geo-ecosystem.
, Brice R. Rea,
Quaternary Research pp 1-6; https://doi.org/10.1017/qua.2021.48

The concept of Quaternary average conditions has gained popularity over the past few decades, especially with studies of long-term landscape evolution. In this paper, we critically assess this concept by analyzing the marine isotope record (LR04 δ18O stack) relative to the Quaternary. This shows that the frequency and amplitude of climate glacial-interglacial cycles are not constant throughout the Quaternary, with a clear change during the Middle Pleistocene Transition (MPT), and that many minor oscillations exist within each cycle. For this reason, the identification of pre- and post-MPT most-frequent and, cumulatively, longest-lasting (rather than average) conditions is recommended. The most-frequent pre-MPT δ18O value of 3.725 ± 0.025‰ last occurred during 11.31–11.47 ka, while the most-frequent post-MPT δ18O value of 4.475 ± 0.025‰ last occurred during 14.81–15.04 ka. However, many other δ18O values were almost as frequent throughout the Quaternary and we present geomorphological reasons as to why it is unlikely that the present-day landscape reflects Quaternary average or, indeed, most-frequent conditions. Collectively, our results indicate that extreme caution should be taken when attempting to infer long-term landscape evolution processes (including the buzzsaw hypothesis) based on average Quaternary conditions.
Quaternary Research pp 1-19; https://doi.org/10.1017/qua.2021.43

Barrier islands are sedimentary bodies susceptible to changes in sediment supply, dominant physical processes, and sea level. The aim of this work was to study the sedimentary processes that established Marambaia Barrier Island (SE Brazil) as an elongated sandy body that created Sepetiba Bay. For this purpose, barrier and back-barrier bay environments were analyzed using high-resolution satellite imagery, geophysical and topographic surveys, surface sediment samples and short cores, and radiocarbon and optically stimulated luminescence (OSL) dating techniques. Seven morpho-sedimentary domains were identified: coastal beach ridges, overland flow features, inter-ridge paleo lagoon, bayside beach ridges, marshlands, dune field and tidal wetlands. The results show that Marambaia Barrier Island evolved throughout the Holocene, first under normal regression conditions during sea-level rise, and then by forced regression as sea level lowered to its present position. Concurrent processes related to longshore drift, onshore transport, reworked barrier deposits, eolian transport, bay circulation, and pedogenesis influenced its morpho-sedimentary evolution. Morphological features such as truncated beach ridges, flying spits, and filled channels attest to the occurrence of alternating periods of erosion and accretion, evincing how the morphology of barrier island systems preserves an important archive of environmental changes.
Scott A. Reynhout, Michael R. Kaplan, , Juan Carlos Aravena, Rodrigo L. Soteres, Roseanne Schwartz, Joerg M. Schaefer
Quaternary Research pp 1-16; https://doi.org/10.1017/qua.2021.45

In the Cordillera Darwin, southernmost South America, we used 10Be and 14C dating, dendrochronology, and historical observations to reconstruct the glacial history of the Dalla Vedova valley from deglacial time to the present. After deglacial recession into northeastern Darwin and Dalla Vedova, by ~16 ka, evidence indicates a glacial advance at ~13 ka coeval with the Antarctic Cold Reversal. The next robustly dated glacial expansion occurred at 870 ± 60 calendar yr ago (approximately AD 1150), followed by less-extensive dendrochronologically constrained advances from shortly before AD 1836 to the mid-twentieth century. Our record is consistent with most studies within the Cordillera Darwin that show that the Holocene glacial maximum occurred during the last millennium. This pattern contrasts with the extensive early- and mid-Holocene glacier expansions farther north in Patagonia; furthermore, an advance at 870 ± 60 yr ago may suggest out-of-phase glacial advances occurred within the Cordillera Darwin relative to Patagonia. We speculate that a southward shift of westerlies and associated climate regimes toward the southernmost tip of the continent, about 900–800 yr ago, provides a mechanism by which some glaciers advanced in the Cordillera Darwin during what is generally considered a warm and dry period to the north in Patagonia.
Namier Namier, Xinbo Gao, Qingzhen Hao, Slobodan B. Marković, Yu Fu, Yang Song, Huandi Zhang, Xuechao Wu, Chenglong Deng, Milivoj B. Gavrilov, et al.
Quaternary Research, Volume 103, pp 35-48; https://doi.org/10.1017/qua.2021.41

We conducted the first detailed mineral magnetic investigation of more than nine loess–paleosol couplets of the composite Titel-Stari Slankamen loess section in Serbia, which provides one of the longest and most complete terrestrial record of paleoclimatic changes in Europe since ~1.0 Ma. The results show that the ferrimagnetic mineral assemblage of the loess units is dominated by partially oxidized multidomain (MD) and pseudo-single domain (PSD) magnetite; however, with an increasing degree of pedogenesis, the eolian contribution is gradually masked by pedogenic superparamagnetic(SP) and single-domain (SD) ferrimagnets (mainly maghemite). The overall consistency of ferrimagnetic grain-size parameters indicates an absence of dissolution of the fine-grained ferrimagnetic fraction despite changes in climate regime over the past 1.0 Ma. The variations of normalized dJ/[email protected] and normalized χ[email protected]°C reflect a long-term stepwise increase in aridity during glacials with a major step at ~0.6–0.5 Ma, over the last 1.0 Ma. Overall, the results provide an improved basis for the future use of the magnetic properties of Serbian loess deposits for paleoclimatic reconstruction.
Back to Top Top