Frontiers in Virtual Reality

Journal Information
EISSN : 2673-4192
Current Publisher: Frontiers Media SA (10.3389)
Total articles ≅ 64

Latest articles in this journal

, Tuo Liu, Christoph Kahl, Andrea Hildebrandt, Stefan Zachow
Frontiers in Virtual Reality, Volume 2; doi:10.3389/frvir.2021.619811

A high realism of avatars is beneficial for virtual reality experiences such as avatar-mediated communication and embodiment. Previous work, however, suggested that the usage of realistic virtual faces can lead to unexpected and undesired effects, including phenomena like the uncanny valley. This work investigates the role of photographic and behavioral realism of avatars with animated facial expressions on perceived realism and congruence ratings. More specifically, we examine ratings of photographic and behavioral realism and their mismatch in differently created avatar faces. Furthermore, we utilize these avatars to investigate the effect of behavioral realism on perceived congruence between video-recorded physical person’s expressions and their imitations by the avatar. We compared two types of avatars, both with four identities that were created from the same facial photographs. The first type of avatars contains expressions that were designed by an artistic expert. The second type contains expressions that were statistically learned from a 3D facial expression database. Our results show that the avatars containing learned facial expressions were rated more photographically and behaviorally realistic and possessed a lower mismatch between the two dimensions. They were also perceived as more congruent to the video-recorded physical person’s expressions. We discuss our findings and the potential benefit of avatars with learned facial expressions for experiences in virtual reality and future research on enfacement.
Emil Rosenlund Høeg, Tina Myung Povlsen, Jon Ram Bruun-Pedersen, Belinda Lange, Niels Christian Nilsson, Kristian Birkemose Haugaard, Sune Mølgård Faber, Søren Willer Hansen, Charlotte Kira Kimby, Stefania Serafin
Frontiers in Virtual Reality, Volume 2; doi:10.3389/frvir.2021.647993

Background: As the elderly population continues to grow, so does the demand for new and innovative solutions to tackle age-related chronic diseases and disabilities. Virtual Reality (VR) has been explored as a novel therapeutic tool for numerous health-related applications. Although findings frequently favors VR, methodological shortcomings prevent clinical recommendations. Moreover, the term “VR” is frequently used ambiguously to describe e.g., video games; the distinction remains vague between immersive VR (IVR) systems and non-immersive VR (NVR). With no distinct demarcation, results of outcome measures are often pooled in meta-analyses, without accounting for the immersiveness of the system. Objective: This systematic review focused on virtual reality-based rehabilitation of older adults (+60) in motor rehabilitation programs. The review aims to retrospectively classify previous studies according to the level of immersion, in order to get an overview of the ambiguity-phenomenon, and to utilize meta-analyses and subgroup analyses to evaluate the comparative efficacy of system immersion in VR-based rehabilitation. Methods: Following PRISMA guidelines, we conducted a systematic search for randomized controlled trials, describing virtual rehabilitation or video games interventions for older adults (+60). Main outcomes were pain, motivation, mobility, balance, and adverse events. Results: We identified 15 studies which included 743 patients. Only three studies utilized IVR. The rest used various NVR-equipment ranging from commercial products (e.g., Nintendo Wii), to bespoke systems that combine tracking devices, software, and displays. A random effects meta-analysis of 10 studies analyzed outcome measures of mobility, balance, and pain. Protocols and dosage varied widely, but outcome results were in favor of immersive and non-immersive interventions, however, dropout rates and adverse events were mostly in favor of the control. Conclusions: We initialize a call-for-action, to distinguish between types of VR-technology and propose a taxonomy of virtual rehabilitation systems based on our findings. Most interventions use NVR-systems, which have demonstrably lower cybersickness-symptoms than IVR-systems. Therefore, adverse events may be under-reported in RCT-studies. An increased demand for IVR-systems highlight this challenge. Care should be given, when applying the results of existing NVR tools to new IVR-technologies. Future studies should provide more detail about their interventions, and future reviews should differentiate between NVR and IVR.
Rachel Doggett, Elizabeth J. Sander, James Birt, Matthew Ottley,
Frontiers in Virtual Reality, Volume 2; doi:10.3389/frvir.2021.620503

Irrelevant ambient noise can have profound effects on human performance and wellbeing. Acoustic interventions (e.g., installation of sound absorbing materials) that reduce intelligible noise (i.e., sound unrelated to the relevant speech, including noise from other talkers within the space) by reducing room reverberation, have been found to be an effective means to alleviate the negative effects of noise on cognitive performance. However, these interventions are expensive, and it is difficult to evaluate their impact in the field. Virtual reality (VR) provides a promising simulation platform to evaluate the likely impact of varied acoustic interventions before they are chosen and installed. This study employed a virtual classroom environment to evaluate whether an intervention to reduce reverberation can be simulated successfully in VR and mitigate the effects of ambient noise on cognitive performance, physiological stress, and mood. The repeated-measures experimental design consisted of three acoustic conditions: no ambient noise, typical open-plan classroom ambient noise without acoustic treatment, and the same ambient noise with acoustic treatment to reduce reverberation. Results revealed that ambient noise negatively affected participants’ cognitive performance but had no measurable effect on physiological stress or self-reported mood. Importantly, the negative effect of ambient noise was completely ameliorated by the acoustic treatment (i.e. indistinguishable from performance in the no noise condition). The study shows that VR provides an effective and efficient means to evaluate the cognitive effects of acoustic interventions.
, Sungchul Jung, Robert W. Lindeman
Frontiers in Virtual Reality, Volume 2; doi:10.3389/frvir.2021.658561

This article reports on a study to evaluate the effectiveness of virtual human (VH) role-players as leadership training tools within two computer-generated environments, virtual reality (VR) and mixed reality (MR), compared to a traditional training method, real human (RH) role-players in a real-world (RW) environment. We developed an experimental training platform to assess the three conditions: RH role-players in RW (RH-RW), VH role-players in VR (VH-VR), and VH role-players in MR (VH-MR), during two practice-type opportunities, namely pre-session and post-session. We conducted a user study where 30 participants played the role of leaders in interacting with either RHs or VHs before and after receiving a leadership training session. We then investigated (1) if VH role-players were as effective as RH role-players during pre- and post-sessions, and (2) the impact that the human-type (RH, VH) in conjunction with the environment-type (RW, VR, MR) had on the outcomes. We also collected user reactions and learning data from the overall training experience. The results showed a regular increase in performance from pre- to post-sessions in all three conditions. However, we did not find a significant difference between VHs and RHs. Interestingly, the VH-MR condition had a more significant influence on performance and task engagement compared to the VH-VR and RH-RW conditions. Based on our findings, we conclude that VH role-players can be as effective as RH role-players to support the practice of leadership skills, where VH-MR could be the best method due to its effectiveness.
Sun Joo (Grace) Ahn, Laura Levy, Allison Eden, Andrea Stevenson Won, Blair MacIntyre, Kyle Johnsen
Frontiers in Virtual Reality, Volume 2; doi:10.3389/frvir.2021.648575

The global COVID-19 pandemic forced all large in-person events to pivot to virtual or online platforms. IEEEVR2020 coincided with rising concerns and restrictions on travel and large gatherings, becoming one of the first academic conferences to rapidly adapt its programming to a completely virtual format. The global pandemic provided an impetus to re-examine the possibility of holding social interactions in virtual worlds. This article aims to: (1) revisit the issues of virtual conferences noted in earlier studies, focusing specifically on academic conferences, (2) introduce new survey and observational data from the recent IEEEVR2020 conference, and (3) present insights and future directions for virtual conferences during and after the COVID-19 pandemic. Findings from a field observation during the conference and a post-conference survey point to complex relationships among users, media platforms selected, and social constraints during the virtual conference.
, Yu Wang, Sungchul Jung, Simon Hoermann, Robert W. Lindeman
Frontiers in Virtual Reality, Volume 2; doi:10.3389/frvir.2021.641296

Avatar-mediated collaboration in virtual environments is becoming more and more prevalent. However, current consumer systems are not suited to fully replicate real-world nonverbal communication. We present a novel avatar system for collaboration in virtual reality, which supports high levels of nonverbal expression by tracking behavior such as body movement, hand gesture, and facial expression. The system was built using camera tracking technology only. Therefore, in contrast to many other high-level tracking systems, it does not require users to wear additional trackers on their bodies. We compared our highly expressive system with a consumer setup extended with two body-worn trackers in a dyadic study. We investigated users’ performance, such as completion time and accuracy, as well as the presence and interpersonal attraction in a virtual charades game using an asymmetric control scheme. The results show that participants interacting with highly expressive avatars felt more social presence and attraction and exhibited better task performance than those interacting with partners represented using low-expressive avatars. Hence, we conclude that virtual reality avatar systems benefit from a higher level of nonverbal expressiveness, which can be achieved without additional body-worn trackers.
James Coleman Eubanks, Alec G. Moore, Paul A. Fishwick, Ryan P. McMahan
Frontiers in Virtual Reality, Volume 2; doi:10.3389/frvir.2021.647896

Consumer virtual reality (VR) technologies have made embodying a virtual avatar during an immersive experience more feasible. The sense of embodiment toward that virtual avatar can be characterized and measured along three factors: self-location, agency, and body ownership. Some measures of embodiment have been previously proposed, but most have not been validated or do not measure the three individual factors of embodiment. In this paper, we present the construction and validation of a preliminary version of a short questionnaire that not only addresses these factors of embodiment but can also be used as an in-VR questionnaire, which we call the pESQ. By using and validating the pESQ, we provide results indicating that foot tracking significantly improves self-location and agency, and that an avatar significantly improves body ownership.
, Mia Trojovsky, Molly M. Jameson
Frontiers in Virtual Reality, Volume 2; doi:10.3389/frvir.2021.627350

Increased participation in activities has been associated with improved positive mental health outcomes. However, there is much debate regarding the net effects of video games on individuals. Typified as a socially isolating activity, many games inherently contain socialization within the environment with game-generated characters or other players. Coinciding with the time of the initial pandemic/quarantine period was the release of a popular socializing and life simulation game, Animal Crossing: New Horizons. We investigated whether participation in this game was related to emotional outcomes associated with pandemics (e.g., loneliness and anxiety). The relationship between deleterious mental health and social gaming, amid a time of enforced reduction in socializing, would allow us to isolate the impact of the introduction of a social video game on improving the quality of life for players of this game. Participants (n = 1053) were asked about their time spent playing video games via an online survey, their socialization in game play, loneliness, and anxiety. We predicted that participants with higher levels of social interaction within the game would report less loneliness and anxiety. Utilizing multiple linear regression analyses, the research found that increased gaming and related activities were predictive of higher anxiety and somewhat related to increased loneliness. However, increased visits to another island were associated with lower levels of loneliness. As such, players may be utilizing gaming as a coping mechanism for anxiety. This research may inform generalized research regarding the influence that social games may have on feelings of loneliness and anxiety.
Paschalis Panteleris, Damien Michel, Antonis Argyros
Frontiers in Virtual Reality, Volume 2; doi:10.3389/frvir.2021.649784

The solutions to many computer vision problems, including that of 6D object pose estimation, are dominated nowadays by the explosion of the learning-based paradigm. In this paper, we investigate 6D object pose estimation in a practical, real-word setting in which a mobile device (smartphone/tablet) needs to be localized in front of a museum exhibit, in support of an augmented-reality application scenario. In view of the constraints and the priorities set by this particular setting, we consider an appropriately tailored classical as well as a learning-based method. Moreover, we develop a hybrid method that consists of both classical and learning based components. All three methods are evaluated quantitatively on a standard, benchmark dataset, but also on a new dataset that is specific to the museum guidance scenario of interest.
, Missie Smith, Mary C. Whitton
Frontiers in Virtual Reality, Volume 2; doi:10.3389/frvir.2021.647997

Since its introduction in 1994, Milgram and Kishino's reality-virtuality (RV) continuum has been used to frame virtual and augmented reality research and development. While originally, the RV continuum and the three dimensions of the supporting taxonomy (extent of world knowledge, reproduction fidelity, and extent of presence metaphor) were intended to characterize the capabilities of visual display technology, researchers have embraced the RV continuum while largely ignoring the taxonomy. Considering the leaps in technology made over the last 25 years, revisiting the RV continuum and taxonomy is timely. In reexamining Milgram and Kishino's ideas, we realized, first, that the RV continuum is actually discontinuous; perfect virtual reality cannot be reached. Secondly, mixed reality is broader than previously believed, and, in fact, encompasses conventional virtual reality experiences. Finally, our revised taxonomy adds coherence, accounting for the role of users, which is critical to assessing modern mixed reality experiences. The 3D space created by our taxonomy incorporates familiar constructs such as presence and immersion, and also proposes new constructs that may be important as mixed reality technology matures.
Back to Top Top