Future Journal of Pharmaceutical Sciences

Journal Information
EISSN : 2314-7253
Total articles ≅ 264
Current Coverage
ESCI
LOCKSS
Filter:

Latest articles in this journal

Krunal Y. Patel, Zarna R. Dedania, Ronak R. Dedania, Unnati Patel
Future Journal of Pharmaceutical Sciences, Volume 7, pp 1-10; doi:10.1186/s43094-021-00286-4

Abstract:
Background Quality by design (QbD) refers to the achievement of certain predictable quality with desired and predetermined specifications. A quality-by-design approach to method development can potentially lead to a more robust/rugged method due to emphasis on risk assessment and management than traditional or conventional approach. An important component of the QbD is the understanding of dependent variables, various factors, and their interaction effects by a desired set of experiments on the responses to be analyzed. The present study describes the risk based HPLC method development and validation of ceftriaxone sodium in pharmaceutical dosage form. Results An efficient experimental design based on central composite design of two key components of the RP-HPLC method (mobile phase and pH) is presented. The chromatographic conditions were optimized with the Design Expert software 11.0 version, i.e., Phenomenex ODS column C18 (250 mm × 4.6 mm, 5.0 μ), mobile phase used acetonitrile to water (0.01% triethylamine with pH 6.5) (70:30, v/v), and the flow rate was 1 ml/min with retention time 4.15 min. The developed method was found to be linear with r2 = 0.991 for range of 10–200 μg/ml at 270 nm detection wavelength. The system suitability test parameters, tailing factor and theoretical plates, were found to be 1.49 and 5236. The % RSD for intraday and inter day precision was found to be 0.70–0.94 and 0.55–0.95 respectively. The robustness values were less than 2%. The assay was found to be 99.73 ± 0.61%. The results of chromatographic peak purity indicate the absence of any coeluting peaks with the ceftriaxone sodium peak. The method validation parameters were in the prescribed limit as per ICH guidelines. Conclusion The central composite design experimental design describes the interrelationships of mobile phase and pH at three different level and responses to be observed were retention time, theoretical plates, and peak asymmetry with the help of the Design Expert 11.0 version. Here, a better understanding of the factors that influence chromatographic separation with greater confidence in the ability of the developed HPLC method to meet their intended purposes is done. The QbD approach to analytical method development was used for better understanding of method variables with different levels.
Muhammad Tukur Ibrahim, Adamu Uzairu, Sani Uba, Gideon Adamu Shallangwa
Future Journal of Pharmaceutical Sciences, Volume 7, pp 1-11; doi:10.1186/s43094-021-00279-3

Abstract:
Background Lung cancer remains the leading and deadly type of cancer worldwide. It was estimated to account for about 25% of the 7 million people that died as a result of cancer-related issues/mortality every year in the world. Non-small cell lung cancer (NSCLC) is the lethal/deadly class of lung cancer with nearly 1.5 million reported cases and less than 20% survival rate. Therefore, it becomes necessary to explore more effective NSCLC drugs. Result A computational approach was employed here to design ten new EGFRWT inhibitors using compound 18 as a template for the design identified with the best binding affinity and good pharmacokinetic properties previously reported in our work. The modeled inhibitory activities of these newly designed EGFRWT inhibitors (range from 7.746966 to 11.09261) were better than that of the hit compound with pIC50 of 7.5639 and gefitinib the positive control with pIC50 of 5.879426. The ligand-binding interaction between these newly designed EGFRWT inhibitors and the EGFR tyrosine kinase receptor as shown in Table 3 was investigated and elucidated using molecular docking protocol. Based on the molecular docking results, the binding affinities of these newly designed EGFRWT inhibitors were found to be between − 8.8 and − 9.5 kcal/mol. The designed compound SFD10 has the highest binding affinity of − 9.5 kcal/mol followed by compound SFD8 (with a binding affinity of − 9.3 kcal/mol), then by compound SFD9 and 4 (each with a binding affinity of − 9.3 kcal/mol). None of them was found to have more than one violation of the filtering criterion used in this study thereby showing good ADMET properties. Conclusion The modeled inhibitory activities and binding affinities of these newly designed EGFRWT inhibitors were found to be higher than that of the template compound and the control (gefitinib) used in this research. They were also seen to be non-toxic with good pharmacokinetic properties.
Mohamed Ali Seyed, Siddiqua Ayesha, Norazrina Azmi, Fahad Mohamed Al-Rabae, Adel Ibrahim Al-Alawy, Othman Rashed Al-Zahrani, Yousef Hawsawi
Future Journal of Pharmaceutical Sciences, Volume 7, pp 1-14; doi:10.1186/s43094-021-00295-3

Abstract:
Background Bioactive principles from various natural resources including medicinal herbs have always played a crucial role in healthcare settings and increasingly became key players in drug discovery and development for many biopharmaceutical applications. Additionally, natural products (NPs) have immense arrangement of distinctive chemical structures with diverse functional groups that motivated numerous investigators including synthetic chemists to discover new therapeutic entities. Numerous pre-clinical investigations involving the animal models have evident the usefulness of these NPs against various human diseases including neurodegenerative disorders (NDs). Main text Ocimum basilicum Linn (O. basilicum L.), also known as sweet basil, is well practiced in traditional healthcare systems and has been used to treat various human illnesses, which include malaria, skin disease, diarrhea, bronchitis, dysentery, arthritis, eye diseases, and insect bites and emphasize the significance of the ethno-botanical approach as a potential source of novel drug leads With the growing interest in advanced techniques, herbal medicine and medicinal plants explorations are still considered to be a novel resource for new pharmacotherapeutic discovery and development. O. basilicum L and its bioactive principles including apigenin, eugenol, myretenal, β-sitosterol, luteolin, rosmarinic acid, carnosic acid, essential oil (EO)-rich phenolic compounds, and others like anthocyanins and flavones could be of therapeutic values in NDs by exhibiting their neuro-protective efficacy on various signaling pathways. The present comprehensive review collected various related information using the following searching engines such as PubMed, Science Direct, Google Scholar, etc. and focused mainly the English written documents. The search period comprised of last two decades until present. Conclusion Although these efficacious plant genera of prime importance and has potential medical and socioeconomic importance, yet the pivotal evidence for its neuroprotective potential in novel clinical trials remains lacking. However, with the available wealth of obtainable literature on this medicinal plant, which supports this review and concludes that O. basilicum L may function as a promising therapeutics for the treatment of NDs.
Ilyasu Salim, Adeniji Kehinde Olowosulu, Abdulrahman Abdulsamad, Mahmud Sani Gwarzo, Garba Mohammed Khalid, Naimatu Tijjani Ahmad, Florence Egbomonjiade Eichie, Fatima Shuaibu Kurfi
Published: 8 July 2021
by 10.1186
Future Journal of Pharmaceutical Sciences, Volume 7, pp 1-12; doi:10.1186/s43094-021-00253-z

Abstract:
Background Computer-aided formulation design is gaining fantastic attention in chemical engineering of high functionality pharmaceutical materials for dosage form manufacture. To accelerate development of novel formulations in a quality-by-design perspective, SeDeM Expert System preformulation algorithm was developed as a tool for the design of solid drug delivery systems and for prediction of direct compression manufacturability of solid formulations. This research aims to integrate SeDeM Expert System into particle engineering design space of co-processing of solid excipients to develop novel composites with optimum direct compression propensity, using corn starch and microcrystalline cellulose powders as model primary excipients. Result The data and information generated from the expert system have elucidated the bulk-level characteristics of the primary excipients, enabled computation of the optimum co-processing ratio of the ingredients, and validated the impact of co-processing on material functionality. The experimental flowability (7.78±0.17), compressibility functions (5.16±0.14), parameter profile (0.92), and parametric profile index (6.72±0.27) of the engineered composites, were within the acceptable thresholds. With a reliability constant of 0.961, the net direct compression propensity of the composites expressed as Good Compression Index (6.46±0.26) was superior to that of the primary excipients, but comparable to reference co-processed materials, StarLac® (6.44±0.14) and MicroceLac®100 (6.58±0.03). Conclusion Application of SeDeM Expert System in particle engineering via co-processing has provided an accelerated upstream proactive mechanism for designing directly compressible co-processed excipients in a quality-by-design fashion. A four-stage systematic methodology of co-processing of solid excipients was postulated. Stage I entails the characterization of CMAs of both defective and corrective excipients, and elucidation of their physicomechanical limitations using SeDeM diagrams. Stage II involves computation of loading capacity of the corrective excipient using dilution potential equation. Stage III entails the selection of co-processing technique based on desired Critical Material Attributes as revealed by the information obtained from Stage I. Stage IV evaluates the impact of co-processing by monitoring the critical behavior of the engineered composites with a decision on either to accept or reject the product.
P. Resmi, G. Jitha, Vishnu Murali, Anu Gopinath
Published: 8 July 2021
by 10.1186
Future Journal of Pharmaceutical Sciences, Volume 7, pp 1-9; doi:10.1186/s43094-021-00283-7

Abstract:
Background Medicinal importance of mangrove plant Rhizophora mucronata, a red mangrove species found in the Asian countries, has long been recognised in traditional systems of medicine. The identification of its phytoconstituents can be a starting point for the drug development. The aim of the work was to extend the current knowledge of phytoconstituents from R. mucronata and to explore its pharmacological importance in the treatment of diabetes mellitus. In the present study, we analysed the chloroform extract from the bark of the mangrove plant R. mucronata for nitrogen-containing constituents using UHPLC QTOF MS profiling, and α-amylase inhibition assay was carried out. Results Four nitrogen-containing compounds were identified from the chloroform extract of the bark of R. mucronata using UHPLC QTOF MS profiling. The compounds identified were N,N′-dicyclohexyl urea, a cryptolepine derivative (C17H15N3O), an aliphatic cyclic compound with hydroxyl and amino groups (C22H43NO), and C16H19NO2 (m/z 258.1495). The anti-amylase activity, an in vitro antidiabetic bioassay, of chloroform extract showed an IC50 value of 220.09 μg/ml. Conclusions This is the first report on the identification of nitrogen-containing compounds from the chloroform extract of the bark of the R. Mucronata. One of the compounds identified was a novel cryptolepine derivative (C16H13N3O), and it falls under the rare category indoloquinoline alkaloid. The chloroform extract also showed significant activity towards α-amylase inhibition assay. Thus, the study has gone some way towards our understanding of the efficacy of bark of the R. mucronata for the treatment of diabetes mellitus and is open for further research.
Minal T. Harde, Sameer H. Lakade
Future Journal of Pharmaceutical Sciences, Volume 7, pp 1-13; doi:10.1186/s43094-021-00276-6

Abstract:
Background A new selective rapid RP-HPLC-DAD method was developed and evaluated for the quantification of doxylamine succinate (DOX) in bulk and pharmaceutical dosage form. The separation of DOX at different degradation conditions was achieved with a Kromasil C18 (4.6 × 250 mm, 5-μm particle size). The mobile phase employed comprised of phosphate buffer (pH 3.5) and methanol in the ratio of 45:55 v/v. The flow rate was kept maintained at 1.0 ml/min and eluents were detected at 262 nm. The drug was subjected to different stress conditions like acid, base, neutral, hydrolysis, oxidation, photolysis, and thermal degradation. The analytical performance of the proposed HPLC method was thoroughly validated in terms of linearity, precision, accuracy, specificity, robustness, detection, and quantification limits. Results The method produces linear responses that were found in the range of 10–50 μg/ml. The regression equation was found to be Y = 42984x − 10260. The correlation coefficient was found to be 0.9998. The LOD and LOQ for DOX were found to be 0.96 and 3.28 μg/ml, respectively. The short-term solution stability of DOX (100 μg/ml) was evaluated under (25 ± 2°C) storage condition and found to be 98.82 to 101%. The percentage recovery for DOX was in the range of 99.73 to 99.91%. The obtained results of the stress degradation study and peak purity data indicate the potential of the developed HPLC method to resolve degradants from DOX peak. The major alkaline degradation product was isolated using preparative chromatographic technique and extensive FT-IR was performed to ascertain the structure of the alkaline degradant. Conclusion It was concluded that the proposed method was simple, sensitive, accurate, cost-effective, and less time-consuming for the quantification of DOX. This method was successfully utilized for stability testing of commercially available DOX tablets. Hence, the proposed method can be applied for routine quality control of DOX in bulk drug as well as in marketed formulations.
Imad Osman Abu Reid
Future Journal of Pharmaceutical Sciences, Volume 7, pp 1-8; doi:10.1186/s43094-021-00287-3

Abstract:
Background Chromatographic separation of polar and nonpolar compounds when presented in combined dosage forms has always been considered as great analytical challenge. Separation and retention of both polar and nonpolar compounds by the same stationary phase can be a useful approach for analyses of complex samples with such a difference in chemical properties. Loratadine (nonpolar) and pseudoephedrine (polar) are typical examples of this situation. Results The Box–Behnken design was used to optimize the separation process, an efficient separation of loratadine and pseudoephedrine was achieved within 6 min; employing a mixture of 16.0 mM ammonium acetate buffer (pH 4.5) and acetonitrile (23:77, v/v) as isocratic mobile phase, pumped at 1.0 mL/min through a Zorbax cyanopropyl column (250 mm × 4.6 mm, 5 μm), the analytes were detected at 250 nm. Under the same conditions, separation of sodium benzoate preservative co-formulated with the two analytes in syrup formulation was also achieved. The calibration curve demonstrated excellent linearity in the range of 24.6–123.2 μg/mL and 594.8–2974.0 μg/mL for loratadine and pseudoephedrine, respectively with determination coefficient (r2) > 0.999. Conclusion The method’s accuracy bias < 2.0%, repeatability and intermediate precision (%RSD < 2.0%) were verified. In addition, system suitability parameters were found within the acceptable limits. Satisfactory results were obtained upon the application of the validated method to the analysis of commercial tablet and syrup formulations.
Ghanashyam Arun Girnar, Hitendra Shaligram Mahajan
Published: 5 July 2021
by 10.1186
Future Journal of Pharmaceutical Sciences, Volume 7, pp 1-10; doi:10.1186/s43094-021-00289-1

Abstract:
Background Cerebral ischemia can be considered a lethal disease as it is a leading cause of death worldwide with no prompt line of treatment. The factors which make this disease more fatal are failure of drugs while crossing BBB, very low availability of the drug in the brain, inefficiency of drug molecule in the clinical studies, limited availability of clinical data, lack of awareness about this disease, and many more. Main body This review focuses on reasons and mechanisms of stroke, classification of brain ischemia; it also reveals the current scenario of stroke in India. Very few drugs are effective for the treatment of stroke. This compilation furnishes conventional and recent treatments of stroke along with their hurdles like the gap between preclinical and clinical studies. This review also suggests effective routes of administration of drugs for the treatment of brain ischemia specifically nose-to-brain route and effectiveness of different dosage forms precisely nanoformulations, as the most effective dosage form. Conclusion By following different guidelines and treatments, the risk of brain ischemia can be minimized as well as some advanced techniques for the treatment of this disease proving their efficiency. One of the important aspects in the success of the treatment for this disease is the route of administration of the drug. Among all routes, intranasal drug delivery presents a potential approach and is supposed to be the next-generation therapy for brain disorders. The nose-to-brain route is very effective, and it shows some promising results in case of stroke treatment. The strategy is still under investigation despite various successful lab-scale studies; there are numerous challenges to reach the product in the market. Research is going on to get a better understanding of this strategy. We believe that detailed studies to resolve pitfalls will lead to the successful development of an intranasal formulation for the management of ischemic brain injury such as stroke.
, Adamu Uzairu, Gideon Adamu Shallangwa, Stephen Eyije Abechi
Published: 5 July 2021
by 10.1186
Future Journal of Pharmaceutical Sciences, Volume 7, pp 1-10; doi:10.1186/s43094-021-00288-2

Abstract:
Background The sixteen (16) designed data set of substituted aryl amine-based triazolopyrimidine were docked against Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) employing Molegro Virtual Docker (MVD) software and their pharmacokinetic property determined through SwissADME predictor. Results The docking studies shows compound D16, 5-((6-methoxy-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)amino)benzo[b]thiophen-4-ol to be the most interactive and stable derivative (re-rank score = − 114.205 kcal/mol) resulting from the hydrophobic as well as hydrogen interactions. The hydrogen interaction produced one hydrogen bond with the active residues LEU359 (H∙∙H∙∙O) at a bond distances of 2.2874 Å. All the designed derivatives were found to pass the Lipinski rule of five tests, supporting the drug-likeliness of the designed compounds. Conclusion The ADME analysis revealed a perfect concurrence with the Lipinski Ro5, where the derivatives were found to possess good pharmacokinetic properties such as molar refractivity (MR), number of rotatable bonds (nRotb), log of skin permeability (log Kp), blood-brain barrier (BBB). These results could a deciding factor for the optimization of novel antimalarial compounds.
Prity Rathee, Sunil Kumar, Dinesh Kumar, Beena Kumari, Savita S. Yadav
Future Journal of Pharmaceutical Sciences, Volume 7, pp 1-14; doi:10.1186/s43094-021-00284-6

Abstract:
Background With an increasing number of patients, those who are facing a lot of skin-related complaints, often referred to as skin of pigmentation patients, are on the rise. Among all the most common complaints in patients with skin of color is hyperpigmentation. So, there is need of herbal formulation for treatment of hyperpigmentation. Main body This review article addresses the different types of hyperpigmentation, causes, and its treatment with herbs for the management of the skin hyperpigmentation. As uneven pigmentation of skin or hyperpigmentation is a common skin condition, which occurs when the skin produces more melanin. This can make spots or patches of skin appear darker than surrounding areas. Some forms of hyperpigmentation with post-inflammatory, melasma, and sun spots are more likely to affect areas of face, arms, and legs due to sun exposure and injury. Although the availability of multiple treatments for the condition which leads to some adverse effects, hyperpigmentation continues to present skin care management challenges for dermatologists. Conclusion Some plants and phytoconstituents, e.g., Azadirachta indica, Glycyrrhiza glabra, Panax ginseng and genistein, ellagic acids, quercetin, are very useful in herbal cosmetic as anti-hyperpigmentry agents in cosmetic industries. Some of flavonoids and triterpenoids present in plants also show their effect as antioxidant and skin whitening agents. It is expected that this review will compile and improve the existing knowledge on the potential utilization of herbs for the treatment of skin hyperpigmentation.
Back to Top Top