ASME Journal of Engineering for Sustainable Buildings and Cities

Journal Information
ISSN / EISSN : 2642-6641 / 2642-6625
Published by: ASME International (10.1115)
Total articles ≅ 54
Filter:

Latest articles in this journal

ASME Journal of Engineering for Sustainable Buildings and Cities pp 1-19; https://doi.org/10.1115/1.4052822

Abstract:
The outbreak of SARS-CoV-2 virus forced office workers to conduct their daily work activities from home over an extended period. Given this unique situation, an opportunity emerged to study the satisfaction of office workers with indoor environmental quality (IEQ) factors of their houses where work activities took place and associate these factors with mental and physical health. We designed and administered a questionnaire that was open for 45 days during the COVID-19 pandemic and received valid data from 988 respondents. The results show that low satisfaction with natural lighting, glare and humidity predicted eye related symptoms, while low satisfaction with noise was a strong predictor of fatigue or tiredness, headaches or migraines, anxiety, and depression or sadness. Nose and throat related symptoms and skin related symptoms were only uniquely predicted by low satisfaction with humidity. Low satisfaction with glare uniquely predicted an increase in musculoskeletal discomfort. Symptoms related to mental stress, rumination or worry were predicted by low satisfaction with air quality and noise. Finally, low satisfaction with noise and indoor temperature predicted the prevalence of symptoms related to trouble concentrating, maintaining attention or focus. Workers with higher income were more satisfied with humidity, air quality and indoor temperature and had better overall mental health. Older individuals had increased satisfaction with natural lighting, humidity, air quality, noise, and indoor temperature. Findings from this study can inform future design practices that focus on hybrid home-work environments by highlighting the impact of IEQ factors on occupant well-being.
Yimin Chen, Jin Wen,
ASME Journal of Engineering for Sustainable Buildings and Cities pp 1-23; https://doi.org/10.1115/1.4052729

Abstract:
A whole building fault (WBF) refers to a fault occurring in one component, but may cause impacts on other components or subsystems, or arise impacts of significant energy consumption and thermal comfort. Conventional methods which targeted at the component level fault detection cannot be successfully employed to detect a WBF because of the fault propagation among the closely coupled equipment or subsystems. Therefore, a novel data-driven method named weather and schedule-based pattern matching (WPM) and feature based principal component analysis (FPCA) method for WBF detection is developed. Three processes are established in the WPM-FPCA method to address three main issues in the WBF detection. First, a feature selection process is used to pre-select data measurements which represent a whole building's operation performance under a satisfied status, namely baseline status. Secondly, a WPM process is employed to locate weather and schedule patterns in the historical baseline database, that are similar to that from the current/incoming operation data, and to generate a WPM baseline. Lastly, PCA models are generated for both the WPM baseline data and the current operation data. Statistic thresholds used to differentiate normal and abnormal (faulty) operations are automatically generated in this PCA modeling process. The PCA models and thresholds are used to detect WBF. This paper is the first of a two-part study. Performance evaluation of the developed method is conducted using data collected from a real campus building and will be described in the second part of this paper.
ASME Journal of Engineering for Sustainable Buildings and Cities pp 1-41; https://doi.org/10.1115/1.4052640

Abstract:
This paper presents the results from an international survey that investigated the impacts of the built environment on occupant well-being during the COVID-19 pandemic when most professionals were forced to work from home (WFH). The survey was comprised of 81 questions focusing on the respondent's profiles, residences, home indoor environmental quality, health, and home working experiences. A total of 1,460 responses were collected from 35 countries, and 1,137 of them were considered complete for the analysis. The results suggest that home spatial layout has a significant impact on occupant well-being during WFH since home-life distractions and noises due to the lack of a personal workspace are likely to prevent productive work. Lack of scenic views, inadequate daylighting, and poor acoustics were also reported to be detrimental to occupant productivity and the general WFH experience. It is also revealed from this survey that temperature, relative humidity, and indoor air quality generally have higher satisfaction ratios compared with the indoor lighting and acoustic conditions, and the home layout. Hence, home design for lighting, acoustics, and layout should also receive greater attention in the future
ASME Journal of Engineering for Sustainable Buildings and Cities, Volume 2, pp 1-37; https://doi.org/10.1115/1.4052215

Abstract:
The research collection aims at finding the various possible opportunities for the effective integration of shallow geothermal energy (SGE) to decrease the energy demand in the built environment and to reduce emission associated with it. The direct utilization of SGE using a ground source heat pump (GSHP) has been reviewed in comprehensive review part I and part II. From the extensive review, it is found that the hybrid GSHP is needed to avoid ground thermal imbalance and peak demand. Hybrid GSHP can adopt various supplemental heat sources and sinks according to the local climatic conditions and the balance of energy demands. The primary focus on the integration of subsystems such as biomass, solar energy (PV, PVT, and collector), phase change material, micro gas turbine, and absorption heat pump with GSHP is presented for heating application. This comprehensive review part III highlights the recent research findings and a potential gap in hybrid GSHP for further research and developments
ASME Journal of Engineering for Sustainable Buildings and Cities pp 1-30; https://doi.org/10.1115/1.4052188

Abstract:
Lockdown measures and mobility restrictions to combat the spread of COVID-19 have impacted energy consumption patterns. The overall decline of energy use during lockdown restrictions can best be identified through the analysis of energy consumption by source and end-use sectors. Using monthly energy consumption data, the total 9-months use between January and September for the years 2015-2020 are calculated for each end-use sector (transportation, industrial, residential and commercial). The cumulative consumption within these 9 months of the petroleum, natural gas, biomass, and electricity energy by the various end-use sectors are compared. The analysis shows that the transportation sector experienced the greatest decline (14.38%). The consumption of electricity by each state and each end-use sector in the times before and during the pandemic highlights the impact of specific lockdown procedures on energy use. The average total consumption for each state was found for the years 2015-2019. The total average annual growth rate for 2020 was used to find a correlation coefficient between COVID-19 case and death rate, population density, and lockdown duration. A correlation coefficient was also calculated between the 2020 average annual growth rate for all sectors and average annual growth rate for each individual end-user. The results show that Indiana had the highest percent reduction in consumption of 10.07% while North Dakota had the highest consumption increase of 7.61%. This is likely due to the amount of industrial consumption relative to other sectors in the state.
ASME Journal of Engineering for Sustainable Buildings and Cities, Volume 2, pp 1-2; https://doi.org/10.1115/1.4052220

Abstract:
In this special issue, we are pleased to present a series of peer-reviewed articles on electrification of the building heating sector.
ASME Journal of Engineering for Sustainable Buildings and Cities, Volume 2; https://doi.org/10.1115/1.4052187

Abstract:
The research collection aims at finding the various possible opportunities for the effective integration of shallow geothermal energy (SGE) to decrease the energy demand in the built environment and to reduce emission associated with it. The integration of SGE with heat pump using pipe network is extensively reviewed. The open-loop and closed-loop (vertical, horizontal, energy piles) pipe networks are the most common type of ground heat exchanging methods. The objective of the review is to improve the heat exchanger effectiveness through various design aspects according to the local climatic conditions. This comprehensive review part I contains the research details pertaining to the last two decades about ground heat exchangers (geometrical aspects, borehole material, grout material, thermal response test, analytical and numerical models). Also, the factors influencing the ground heat exchanger’s performance such as heat transfer fluid (HTF), groundwater flow, and soil properties are discussed in detail. This paper highlights the recent research findings and potential research points in the ground heat exchanger.
Praveen Cheekatamarla, ,
ASME Journal of Engineering for Sustainable Buildings and Cities, Volume 2; https://doi.org/10.1115/1.4051881

Abstract:
Economic and population growth is leading to increased energy demand across all sectors—buildings, transportation, and industry. Adoption of new energy consumers such as electric vehicles could further increase this growth. Sensible utilization of clean renewable energy resources is necessary to sustain this growth. Thermal needs in a building pose a significant challenge to the energy infrastructure. Potential technological solutions to address growing energy demand while simultaneously lowering the carbon footprint and enhancing the grid flexibility are presented in this study. Performance assessment of heat pumps, solar thermal collectors, nonfossil fuel-based cogeneration systems, and their hybrid configurations is reported in this study. The impact of design configuration, coefficient of performance (COP), electric grid’s primary energy efficiency on the key attributes of total carbon footprint, life cycle costs, operational energy savings, and site-specific primary energy efficiency are analyzed and discussed in detail. Heat pumps and hydrogen-fueled solid oxide fuel cells (SOFCs) are highly effective building energy resources compared to traditional approaches; however, the carbon intensity of electrical energy and hydrogen production are keys to the overall environmental benefit.
ASME Journal of Engineering for Sustainable Buildings and Cities, Volume 2; https://doi.org/10.1115/1.4051992

Abstract:
Each year, more than 20% of electricity generated in the United States is consumed for meeting the thermal demands (e.g., space cooling, space heating, and water heating) in residential and commercial buildings. Integrating thermal energy storage (TES) with building’s HVAC systems has the potential to reshape the electric load profile of the building and mitigate the mismatch between the renewable generation and the demand of buildings. A novel ground source heat pump (GSHP) system integrated with underground thermal energy storage (UTES) has been proposed to level the electric demand of buildings while still satisfying their thermal demands. This study assessed the potential impacts of the proposed system with a bottom-up approach. The impacts on the electricity demand in various electricity markets were quantified. The results show that, within the capacity of the existing electric grids, the maximum penetration rate of the proposed system in different wholesale markets could range from 51% to 100%. Overall, about 46 million single-family detached houses can be retrofitted into the proposed system without increasing the annual peak demand of the corresponding markets. By implementing the proposed system at its maximum penetration rate, the grid-level summer peak demand can be reduced by 9.1% to 18.2%. Meanwhile, at the grid level, the annual electricity consumption would change by −12% to 2%. The nationwide total electricity consumption would be reduced by 9%.
ASME Journal of Engineering for Sustainable Buildings and Cities, Volume 2, pp 1-25; https://doi.org/10.1115/1.4051656

Abstract:
In this paper, a resiliency analysis is carried out to assess the energy, economic, and power outage survivability benefits of efficient and net-zero energy communities. The analysis addresses the appropriate steps to designing an energy-efficient and net-zero energy community using Phoenix, Arizona, as a primary location for weather and utility inputs. A baseline home is established using International Energy Conservation Code (IECC) 2018 code requirements. Three occupancy levels are evaluated in BEopt to provide diversity in the community’s building stock. The loads from the baseline, energy-efficient optimum, and net-zero energy optimum single-family homes are utilized to determine energy use profiles for various residential community types using occupancy statistics for Phoenix. Then, REopt is used to determine the photovoltaic (PV) and battery storage system sizes necessary for the community to survive a 72-hour power outage. The analysis results indicated that the baseline community requires a 544-kW PV system and 375-kW/1,564 kWh battery storage system to keep all electrical loads online during a 72-hour power outage. The energy-efficient community requires a 291-kW PV system and a 202-kW/820 kWh battery storage system while the net-zero energy community requires a 291-kW PV system and a 191-kW/880 kWh battery storage system. In this study, the economic analysis indicates that it is 31% more cost-effective to install a shared PV plus storage system than to install individual PV plus storage systems in an energy-efficient community. After analyzing the system sizes and costs required to survive various outage durations, it is found that only a 4% difference in net present cost exists between a system sized for a 24-hour outage and a 144-hour outage. In the event of a pandemic or an event that causes a community-wide lockdown, the energy-efficient community would only survive 6 h out of a 72-hour power outage during a time where plug loads are increased by 50% due to added laptops, monitors, and other office electronics. Finally, a climate sensitivity analysis is conducted for efficient communities in Naperville, Illinois, and Augusta, Maine. The analysis suggests that for a 72-hour power outage starting on the peak demand day and time of the year, the cost of resiliency is higher in climates with more heating and cooling needs as heating, ventilation, air conditioning, and cooling (HVAC) is consistently the largest load in a residential building.
Back to Top Top