Journal Information
ISSN / EISSN : 2685-2381 / 2715-2626
Total articles ≅ 49
Filter:

Latest articles in this journal

Prastyono Eko Pambudi, Samuel Kristiyana, Muhammad Suyanto, Maulana Maliq F, Diky Rahmadi
Published: 12 January 2022
AVITEC, Volume 4, pp 137-150; https://doi.org/10.28989/avitec.v4i1.1184

Abstract:
Industry is one of the largest users of reactive power in the distribution of electric power. Industries use equipment such as induction motors, transformers and other equipment to support their production needs. Loads such as induction motors are inductive loads that require reactive power to operate. Reactive power in an electric power distribution network is a loss. Reactive power can reduce the effectiveness of the real power which is converted into active power so that the efficiency of real power usage is reduced. Installing a capacitor bank is one way to compensate for the use of reactive power in a load. Installing capacitor banks aims to improve the value of the power factor that has decreased due to the use of excessive reactive power loads. PLN has set a standard power factor value for consumers of 0.85 and reactive power consumption of 0.62 of the total power consumption. For this reason, it is necessary to carry out further analysis regarding the advantages and disadvantages of installing bank capacitors to improve the value of the power factor so that the ideal economic factor for consumers is obtained. Keywords capacitor bank, power factor, reactive power Full Text: PDF References İnci, M. (2020). Active/reactive energy control scheme for grid-connected fuel cell system with local inductive loads. Energy, 197, 117191. Harold, B. (2016). Analisis Penempatan Capacitor Bank Untuk Meningkatkan Faktor Daya Akibat Pemasangan Distributed Generation (DG) Pada Jaringan Distribusi Radial Menggunakan Metode Genetic Algorithm (GA) (Doctoral dissertation, Institut Teknologi Sepuluh Nopember). Davoodi, A., Abbasi, A. R., & Nejatian, S. (2021). Multi-objective dynamic generation and transmission expansion planning considering capacitor bank allocation and demand response program constrained to flexible-securable clean energy. Sustainable Energy Technologies and Assessments, 47, 101469. Elmitwally, A., Elgamal, M., & Al-Zyoud, A. (2021). A linearized MOV model-based method for fault location on off-terminal series capacitor bank-compensated transmission line using one-end current. Electric Power Systems Research, 199, 107400. Rusda, R., Karim, K., & Masing, M. (2018, January). Analisis Perbaikan Faktor Daya Untuk Penghematan Energi Listrik Pada Politeknik Negeri Samarinda. In Prosiding Seminar Nasional Teknologi, Inovasi dan Aplikasi di Lingkungan Tropis, 1(1), 1-9. Barlian, T., Apriani, Y., Savitri, N., & Hurairah, M. (2020). Analisis Kapasitor Bank Untuk Memperbaiki Tegangan. Jurnal Surya Energy, 4(2), 391-396. Howlader, A. M., Sadoyama, S., Roose, L. R., & Chen, Y. (2020). Active power control to mitigate voltage and frequency deviations for the smart grid using smart PV inverters. Applied Energy, 258, 114000. Zhou, Y., Li, Z., & Wang, G. (2021). Study on leveraging wind farms' robust reactive power range for uncertain power system reactive power optimization. Applied Energy, 298, 117130. da Silva Benedito, R., Zilles, R., & Pinho, J. T. (2021). Overcoming the power factor apparent degradation of loads fed by photovoltaic distributed generators. Renewable Energy, 164, 1364-1375. L. Di and P. T. Bogowonto. 2019. Menggunakan Simulink pada Sistem Tenaga, 12(1). Windu, N. H., Herri, G., Lukmanul, H., & Khairudin, K. (2017). Optimasi Perbaikan Faktor Daya dan Drop Tegangan Menggunakan Kapasitor Bank Line 5 PT. Bukit Asam. Almanda, D., & Majid, N. (2019). Studi Analisa Penyebab Kerusakan Kapasitor Bank Sub Station Welding di PT. Astra Daihatsu Motor. RESISTOR (elektRonika kEndali telekomunikaSI tenaga liSTrik kOmputeR), 2(1), 7-14. Home-Ortiz, J. M., Vargas, R., Macedo, L. H., & Romero, R. (2019). Joint reconfiguration of feeders and allocation of capacitor banks in radial distribution systems considering voltage-dependent models. International Journal of Electrical Power & Energy Systems, 107, 298-310. Mudjiono, M., Ridzki, I., & Surya, P. (2021). Aplikasi Particle Swarm Optimization Pada Pemasangan Kapasitor Bank Pada Jaringan Distribusi. ELPOSYS: Jurnal Sistem Kelistrikan, 8(3), 65-71.S. S. Satu, N. Nim, Y. Eryuhanggoro, P. Studi, and T. Elektro. (2013) Perancangan Perbaikan Faktor Daya pada Beban 18,956 kW/ 6,600 V, Tugas Akhir. http://dx.doi.org/10.28989/avitec.v4i1.1184 Refbacks There are currently no refbacks.
Agityawan Ranga Manyurang, Bambang Sudibya
Published: 12 January 2022
AVITEC, Volume 4, pp 13-26; https://doi.org/10.28989/avitec.v4i1.1128

Abstract:
Kridosono Yogyakarta sports building is one of the sports facilities in the Kotabaru Yogyakarta. As the function of the exercise routine for this sports building is basketball and volleyball, the use at night of course uses an artificial lighting system. Artificial lighting, especially spotlights that have been installed based on information from the sports building manager, is still lacking in the sense of lack of light. For this reason, this study aims to evaluate the lighting system and calculate the use of floodlight electrical energy after and before the evaluation. The results showed that the average lighting level in the Kridosono Sports Building Yogyakarta did not meet the minimum standard of 200 Lux. Recommendations through the calculation of lighting levels obtained results of 211.2 lux and 202.75 lux. For the DIALux 4.13 simulation using a Philips BVP130 1xLED210/740 spotlight and a Philips BVP130 1 xLED172/830 spotlight, the results are 240 lux and 230 lux. The total electrical energy consumption of the floodlights before the evaluation was 752 kWh/month and after being re-planned by replacing the spotlights using Philips BVP130 1xLED172/830 of 678.3 kWh/month so as to save electrical energy by 9.8% and using Philips BVP130 spotlights 1xLED210/740 electricity consumption is 670kWh/month so that it saves electrical energy by 10.9%. Keywords Lighting System, Electrical Energy, DIALux 4.13 Full Text: PDF References Hutauruk, Fajar Okasantoso., Atmam, dan Situmeang, Usaha. (2017) Analisis Intensitas Pencahayaan Pada Lapangan Planet Futsal Rumbai Pekanbaru. Jurnal Sain, Energi, Teknologi & Industri, 2(1), 1-10. Badan Standar Nasional (BSN). (2000). SNI 03-6197-2000: Konservasi Energi Sistem Pencahayaan pada Bangunan Gedung. Jakarta: Badan Standarisasi Nasional. Madarina, Najma., Asmoro, Wiratno A., dan Justiono, Heri. (2013). “Perancangan Pencahayaan GOR ‘Target’ Keputih dengan Menganalisa Daya serta Menerapkan Konsep Green Building. Jurnal Teknik Pomits, 2(2), 150-155. Edison, Kentiler., Situmeang, Usaha., dan Monice. (2019). Analisis Sistem Pencahayan Terhadap Pemakaian Daya di Perpustakaan Universitas Lancang Kuning. Teknologi dan Sains, 5(1), 1-7. Isnaeni, Lailatul., Santoso, Hari Hadi., dan Wati, Erna Kusuma. (2019). Optimasi Sistem Pencahayaan Gedung Olah raga Hoki di kota Administrasi Jakarta Selatan. Jurnal ilmiah GIGA, 22(1), 33-42. Sumardjati P. (2008). Teknik Pemanfaatan Tenaga Listrik untuk Sekolah Menengah Kejuruan. Journal of Chemical Information and Modeling, 53, 1689–1699. Muhaimin, M.T. (2001). Teknologi Pencahayaan. Bandung: PT. Refika Aditama. Zakeri, Behnam., & Syri, Sanna. (2015). Electrical Energy Storage Systems: A Comparative Life Cycle Cost Analysis. Renewable and Sustainable Energy Reviews, Elsevier, 42(C), 569-596. Philips Lighting. (1986). Light and Perception. Netherlands: Philips Lighting. European Committee for Standardization. (2007). BS EN 12193:2007: Light and Lighting-Sports Lighting. London: European Committee for Standardization.Wilhm, J.L. & T.C. Dorris. (1968). Biological Parameters for Water Quality Criteria. BioScience, 18(6), 477-481. http://dx.doi.org/10.28989/avitec.v4i1.1128 Refbacks There are currently no refbacks.
M. Fanis Abdillah, Gunawan Gunawan, Agus Suprajitno
Published: 12 January 2022
AVITEC, Volume 4, pp 75-88; https://doi.org/10.28989/avitec.v4i1.1132

Abstract:
The impact of greenhouse gas emissions is getting higher due to the use of fossil energy to drive power plants. Efforts to replace it is to develop renewable energy that is popular in Indonesia is micro hydro technology. This study aims to determine the potential of water energy and plant planning at Simbang Weir in Pekalongan. The method used combines water flow measurements with floating techniques and uses geographic information provided by Google Earth. The result of this research is that the water discharge is measured at 3.67 m3/s with a height of 11 meters. The turbine design uses crossflow with a potential power of 280.11 kW. The detailed engineering design is described in full in this study. Keywords PLTMH, water discharge, power potential Full Text: PDF References Boedoyo, M. S. (2008). Penerapan Teknologi untuk Mengurangi Emisi Gas Rumah Kaca. Jurnal Teknologi Lingkungan, 9(1). Sugiyono, A. (2006). Penanggulangan Pemanasan Global Di Sektor Pengguna Energi. Jurnal Sains & Teknologi Modifikasi Cuaca, 7(2), 15-19. S. Soewono, J. Pantouw, and S. Azzahra. (2017). Prakiraan Kebutuhan Energi Listrik Wilayah Jawa-Bali Tahun 2017-2036 dengan Gabungan Metode Analitis, Ekonometri, dan Kecenderungan. Energi & Kelistrikan, 9(2), 101-110. Pangestu, M. (2019). Studi Potensi Daya Listrik Bendungan Gerak Bojonegoro untuk Pembangkit Listrik Tenaga Mikro Hidro (PLTMH). Universitas Muhammadiyah Surakarta. Tobi, M. D., & Van Harling, V. N. (2017). Studi Perencanaan Pembangunan PLTMH di Kampung Sasnek Distrik Sawiat Kabupaten Sorong Selatan Provinsi Papua Barat. Electro Luceat, 3(1), 32-43. Farid, A. (2012). Studi Potensi Dan Perencanaan Sistem Pembangkit Listrik Tenaga Mikrohidro Di Sungai Guci Kabupaten Tegal. Engineering: Jurnal Bidang Teknik, 3(2). Chen, J., Yang, H. X., Liu, C. P., Lau, C. H., & Lo, M. (2013). A Novel Vertical Axis Water Turbine For Power Generation from Water Pipelines. Energy, 54, 184-193. Laia, I. (2018). Analisa Perencanaan PLTMH Pada Sungai Batang Palangai Gadang Kabupaten Pesisir Selatan Provinsi Sumatera Barat. Menara Ilmu, 12(10). Rompas, P. T. (2011). Analisis Pembangkit Listrik Tenaga Mikrohidro (PLTMH) Pada Daerah Aliran Sungai Ongkak Mongondow di Desa Muntoi Kabupaten Bolaang Mongondow. Jurnal Penelitian Saintek, 16(2), 160-171. Nugroho, D., Suprajitno, A., & Gunawan, G. (2017). Desain Pembangkit Listrik Tenaga Mikrohidro di Air Terjun Kedung Kayang. Jurnal Rekayasa Elektrika, 13(3), 161-171. Nasir, B. A. (2014). Suitable Selection of Components for The Micro-Hydro-Electric Power Plant. Advances in energy and power, 2(1), 7-12. Sugiharto, A. (2018). PLTMH sebagai alternatif pembangkit listrik ramah lingkungan. Swara Patra, 8(1), 107-118. http://dx.doi.org/10.28989/avitec.v4i1.1132 Refbacks There are currently no refbacks.
Shandy Avisena, Freddy Kurniawan, Ndaru Atmi Purnami
Published: 12 January 2022
AVITEC, Volume 4, pp 27-42; https://doi.org/10.28989/avitec.v4i1.1109

Abstract:
The orientation angle of a quadrotor UAV can be estimated from gyroscope and accelerometer data. Orientation can be predicted from gyroscope data under static or dynamic conditions, but the predicted value has accumulated errors. Meanwhile, orientation can also be calculated from accelerometer data, but only correct if the sensor is in a static state. To get a more precise orientation angle, the orientation predicted from the gyroscope data and the orientation calculated from the accelerometer data were fused using a Kalman filter. Determination of the condition of the sensor using a threshold value that is applied to the covariance of the acceleration data. in this study, the zero-acceleration compensation algorithm is used so that when the sensor is static, the orientation angle is calculated from the accelerometer. The use of this algorithm can increase the accuracy of the quadrotor orientation for roll angle to 96.84% and pitch angle to 98.91%. Keywords Kalman filter; orientation; attitude; quadrotor; zero-acceleration compensation Full Text: PDF References Sandi, B. Y., Kurniawan, F., & Lasmadi, L. (2020, December). Estimasi Sudut Orientasi Rigid Body dengan Menggunakan Sensor IMU (Inertial Measurement Unit) dan Magnetometer. In Conference SENATIK STT Adisutjipto Yogyakarta (Vol. 6, pp. 283-294). Ardiantara, P. S., Sumiharto, R., & Wibowo, S. B. (2014). Purwarupa Kontrol Kestabilan Posisi dan Sikap pada Pesawat Tanpa Awak Menggunakan IMU dan Algoritma Fusion Sensor Kalman Filter. IJEIS, 4(1), 25-34. Kurniawan, F., Nasution, M. R. E., Dinaryanto, O., & Lasmadi, L. (2021). Penentuan Orientasi dan Translasi Gerakan UAV Menggunakan Data Fusion Berbasis Kalman Filter. AVITEC, 3(2), DOI: 10.28989/avitec.v3i2.890 Rhudy, M. B., Salguero, R. A., & Holappa, K. (2017). A Kalman filtering tutorial for undergraduate students. International Journal of Computer Science & Engineering Survey, 8(1), 1-9. Lasmadi, Cahyadi, A., & Hidayat, R. (2016). Implementasi Kalman Filter untuk Navigasi Quadrotor Berbasis Sensor Accelerometer. Prosiding SENIATI, 242-B. Jonathan, N., & Rippun, F. (2016). Implementasi Filter Kalman Pada Sistem Sensor Inertial Measurement Unit (IMU) Quadcopter. Jurnal Elektro Unika Atma Jaya, 9(2), 99-110. Alma’i, V. R., Wahyudi, W., & Setiawan, I. (2011). Aplikasi Sensor Accelerometer Pada Deteksi Posisi (Doctoral dissertation, Jurusan Teknik Elektro Fakultas Teknik). Kimberly Tuck (2007). Accelerometer Systems and Applications Engineering,Accelerometers, T. S. U. L. Tempe, AZ. Suryanti, D. I. (2017). Inertial Measurement Unit (IMU) Pada Sistem Pengendali Satelit. Media Dirgantara, 12(2). Ojeda, L. V., Zaferiou, A. M., Cain, S. M., Vitali, R. V., Davidson, S. P., Stirling, L. A., & Perkins, N. C. (2017). Estimating Stair Running Performance Using Inertial Sensors.Sensors, 17(11), 2647. Wicaksono, M. A. R., Kurniawan, F., & Lasmadi, L. (2020). Kalman Filter Untuk Mengurangi Derau Sensor Accelerometer pada IMU Guna Estimasi Jarak. AVITEC, 2(2), 145-160, DOI: 10.28989/avitec.v2i2.752 Ermawati, E., Rahayu, P., & Zuhairoh, F. (2017). Perbandingan Solusi Numerik Integral Lipat Dua pada Fungsi Aljabar dengan Metode Romberg dan Simulasi Monte Carlo. Jurnal MSA. http://dx.doi.org/10.28989/avitec.v4i1.1109 Refbacks There are currently no refbacks.
Aris Kiswanto, Hanif Caesar Rachmad, Achmad Solichan, Arief Hendra Saptadi, Dina Mariani, Moh Toni Prasetyo
Published: 12 January 2022
AVITEC, Volume 4, pp 99-108; https://doi.org/10.28989/avitec.v4i1.1192

Abstract:
In  planning  the  installation  of  solar  panels  at  a  location,  it  is  necessary  to  have  solar irradiance data at that location.  Solar  irradiance  data  is  obtained  through  direct measurements using a solar irradiance meter. Solar irradiance measuring  instruments  usually  use  one  of  three  types  of sensors,  including  thermopile  (pyranometer),  solar  cells,  or photodiodes.  Each  has  advantages  and  disadvantages.  The advantages of solar cell sensors are that they have a faster response to sunlight, are more in line with the production of energy produced by solar panels and have a more economical price compared to other sensors. Solar irradiance is directly proportional to the short-circuit current of the solar cell. The aim of this research is to design an Arduino Uno-based device to measure the insolation and irradiance of sunlight, equipped with a data logger to support data analysis. The solar power meter is designed using a solar cell reference with a short circuit current of 455 mA. The microcontroller board used is Arduino UNO ATmega328 while the current sensor used is WCS2801 with a sensitivity of 2mA/mV. Irradiation, current  and  insolation  data  are  recorded  and  stored  every minute using a datalogger to SD card with a capacity of 16 GB. the  average  of  %  error  when  testing  the  comparison  of readings with photodiode-based solar power meter is 1.747%. The highest point of sun insolation is 5.56.kWh/m2 during three-day period of data logging and it is achieved when solar cell is positioned horizontally on the terrace.  Keywords Irradiance, Insolation, Arduino, Data Logger. Full Text: PDF References Hasibuan, A., & Pramana, R. (2013). Perancangan Sistem Monitoring Intensitas Radiasi Matahari (Final Project). Fakultas Teknik Universitas Maritim Raja Ali Haji, Riau. Zhu, H., & Blackborow, P. (2018). Understanding Radiance (Brightness), Irradiance and Radiant Flux. Energetiq. Retrieved September 22, 2021, from https://www.energetiq.com/technote-understanding-radiance-brightness-irradiance-radiant-flux Tan, R. H., Tai, P. L., & Mok, V. H. (2013, November). Solar irradiance estimation based on photovoltaic module short circuit current measurement. In 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA) (pp. 1-4). IEEE. Adi, A. S. (2016). Analisa Performansi Pembangkit Listrik Tenaga Surya Melalui Rancang Bangun Serta Pengukuran dengan Sensor Solar Irradiance dan Temperatur (Final Project). Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember, Surabaya. Suryawinata, H., Purwanti, D., & Sunardiyo, S. (2017). Sistem monitoring pada panel surya menggunakan data logger berbasis ATMega 328 dan Real Time Clock DS1307. Jurnal Teknik Elektro, 9(1), 30-36. Pauzan, M. (2020). Bahasa Pemrograman Arduino (1st ed.). K-Media. Ibrahim, H., & Anani, N. (2017). Variations of PV module parameters with irradiance and temperature. Energy Procedia, 134, 276-285. Dewi, S. D. T., Panatarani, C., & Joni, I. M. (2016, February). Design and development of DC high current sensor using Hall-Effect method. In AIP Conference Proceedings (Vol. 1712, No. 1, p. 030006). AIP Publishing LLC. Suryono, A. R., & Suseno, J. E. (2009). Karakterisasi Sensor Magnetik Efek Hall UGN3503 Terhadap Sumber Magnet dan Implementasinya pada Pengukuran Massa. Berkala Fisika, 12(1). Palo-Tejada, E., Campos-Falcon, V., Merma, M., & Huanca, E. (2020). Low-cost data logging device to measure irradiance based on a Peltier cell and artificial neural networks. In Journal of Physics: Conference Series (Vol. 1433, No. 1, p. 012008). IOP Publishing. Atika, Z., Leow, W. Z., Iszaidy, I., Irwan, Y. M., Safwati, I., Irwanto, M., ... & Saw, S. X. (2021, July). Development A Portable Solar Energy Measurement System. In Journal of Physics: Conference Series (Vol. 1962, No. 1, p. 012049). IOP Publishing.Danandeh, M. A. (2018). Solar irradiance estimation models and optimum tilt angle approaches: A comparative study. Renewable and Sustainable Energy Reviews, 92, 319-330. http://dx.doi.org/10.28989/avitec.v4i1.1192 Refbacks There are currently no refbacks.
Gunawan Gunawan, Dedet Hermawan Setiabudi, Bagus Wahyu Utomo
Published: 12 January 2022
AVITEC, Volume 4, pp 123-136; https://doi.org/10.28989/avitec.v4i1.1201

Abstract:
The movement needs that always increases will cause some problems, especially people are heading to the same destination of the certain area at the same time. To reduce the problems caused by the increase in the number of movements, it is necessary to analyze the future distribution of aircraft passenger movements. The research model is the distribution of aircraft passenger movements in Java Island using the Furness model. In this case, it is found that the Furness model is the best method because have a standard deviation and mean absolute percentage error to the smallest. It could be concluded that the Furness model is more accurate when compared to the Gravity Model (DGCR) with tanner obstacle function in estimating the distribution of movements in 2025 in Java Island Keywords Distribution, Furness, Model, Movement Full Text: PDF References Hazledine, T. (2017). An augmented gravity model for forecasting passenger air traffic on city-pair routes. Journal of Transport Economics and Policy (JTEP), 51(3), 208-224. Gaus, A. (2016). Estimasi distribusi pergerakan arus lalu lintas di kota Ternate dengan menggunakan metode detroit. JURNAL SIPIL SAINS, 2(4). Gunawan, G., & Medianto, R. (2016). Analisis Konektivitas Jaringan Transportasi Udara Nasional. Angkasa: Jurnal Ilmiah Bidang Teknologi, 8(2), 99-110. Gunawan, G., & Medianto, R. (2015). Pemodelan Simulasi Jaringan Transportasi Udara Nasional. ReTII. Suprayitno, H. (2020). Developing a direct gravity trip distribution model for air passenger demand. In IOP Conference Series: Earth and Environmental Science (Vol. 419, No. 1, p. 012092). IOP Publishing. Nõmmik, A., & Kukemelk, S. (2016). Developing gravity model for airline regional route modelling. Aviation, 20(1), 32-37. Gunawan, G. (2018, November). The Distribution of Aircraft Passenger Movements on Java Island Using the Gravity Model. In Conference SENATIK ITDA Yogyakarta (Vol. 4, pp. 47-59). Algifari, A. R. (2013). Teori, Kasus dan Solusi. Yogyakarta: BPFE. Tamin, O. Z. (2008). Perencanaan, Pemodelan dan Rekayasa Transportasi. Bandung: ITB. Apriliansyah, T., & Herman, H. (2015). Perkiraan Distribusi Pergerakan Penumpang di Provinsi Jawa Barat Berdasarkan Asal Tujuan Transportasi Nasional. RekaRacana: Jurnal Teknil Sipil, 1(1), 29. Assauri, S. (1984). Teknik dan metode peramalan. Lembaga Penerbit FE UI, Jakarta. Badan Pusat Statistik. (2021). Statistik Transportasi Udara 2020. Jakarta : BPS. Badan Pusat Statistik. (2020). Statistik Transportasi Udara 2019. Jakarta : BPS. Badan Pusat Statistik. (2019). Statistik Transportasi Udara 2018. Jakarta : BPS. Badan Pusat Statistik. (2018). Statistik Transportasi Udara 2017. Jakarta : BPS. Badan Pusat Statistik. (2017). Statistik Transportasi Udara 2016. Jakarta : BPS. Badan Pusat Statistik. (2016). Statistik Transportasi Udara 2015. Jakarta : BPS. Badan Pusat Statistik. (2015). Statistik Transportasi Udara 2014. Jakarta : BPS. Badan Pusat Statistik. (2014). Statistik Transportasi Udara 2013. Jakarta : BPS. Badan Pusat Statistik. (2013). Statistik Transportasi Udara 2012. Jakarta : BPS. Badan Pusat Statistik. (2012). Statistik Transportasi Udara 2011. Jakarta : BPS. Badan Pusat Statistik. (2011). Statistik Transportasi Udara 2010. Jakarta : BPS. Badan Pusat Statistik. (2010). Statistik Transportasi Udara 2009. Jakarta : BPS.Badan Pusat Statistik. (2009). Statistik Transportasi Udara 2008. Jakarta : BPS. http://dx.doi.org/10.28989/avitec.v4i1.1201 Refbacks There are currently no refbacks.
Beny Firman, Hariyo Santoso, Sigit Priyambodo, Hadi Prasetyo Suseno, Prastyono Eko Pambudi, Rr Yuliana Rachmawati Kusumaningsih
Published: 12 January 2022
AVITEC, Volume 4, pp 109-122; https://doi.org/10.28989/avitec.v4i1.1189

Abstract:
An Induction motor is an electric machine that converts electrical energy into kinetics energy and widely used in the industrial fields. Many disturbances that occur in the motor that cause production to be not optimal as for the problems that occur at PT. Madu Baru Yogyakarta is when there is a disturbance in the three-phase induction motor, workers still use manual methods to analyze the disturbance, so that the time used in the analysis takes a long time even the three-phase induction motor cannot work again. In overcoming this, it is necessary to implement a data logger system that can detect the electrical parameters of a three-phase induction motor in real time, in order to make it easier to analyze existing disturbances through graphs. The voltage sensor CYVS13-34U0 and current sensor SCT-019 will detect the electrical parameters which will then be processed by the Arduino Mega 2560 pro so that the processed data will be stored on the microsd card. The data resulting from the processing are electrical parameters in the form of voltage, current, apparent power, real power, reactive power, and power factor. The data will be saved as a file with .txt format which has an interval of about 1 minute for each storage.
Phisca Aditya Rosyady, Fadil Fajeri, Muhammad Andika Agustian
Published: 12 January 2022
AVITEC, Volume 4, pp 1-12; https://doi.org/10.28989/avitec.v4i1.1061

Abstract:
The development of the world of transportation in Indonesia is growing very rapidly, especially in the field of land transportation.This can be seen from the number of motorized vehicles, both cars, and motorcycles in Indonesia, which continues to increase from year to year.According to data from Badan Pusat Statistik (BPS), the number of motorized vehicles reached 126,508,776 units, the data increased 5.9 percent from the previous year 2017 wherein that year the number of motorized vehicles was 118,922,708 units. The problem that still often occurs for land transportation infrastructure is that there are still many damaged roads such as potholes, so prevention is needed by recording road damage data such as the depth of holes during manual recording, so in this study, we discuss how to measure these holes using ultrasonic sensors. integrated with GPS data to record the location of potholes. The result is that the measurement error using ultrasonic is 4.9%. Meanwhile, for the results of testing the GPS data, the error in latitude data is 0.00061 %, the data for longitude error is 0.00004 %.. Keywords Road, Pothole,Ultrasonic,GPS, ThingSpeak Full Text: PDF References Badan Pusat Statistik (2018). Statistik Transportasi Darat 2018. Diambil dari Jakarta: BPS RI/BPS-StatisticsIndonesia:https://www.bps.go.id/publication/2019/11/27/7fdd3379108b4a60e046f4c8/statistik-transportasi--darat--2018. Irefan, S., & Adry, M. R. (2018). Pengaruh Infrastruktur Terhadap Pertumbuhan Ekonomi di Indonesia. ECOsains: Jurnal Ilmiah Ekonomi dan Pembangunan, 7(1), 57-66. Rusmusi, I. M. P., & Handayani, D. R. (2018). Pengaruh Investasi Infrastruktur Jalan, Air, dan Pendidikan Terhadap Pertumbuhan Ekonomi Jawa Tengah Tahun 2011-2015. Jurnal Ekonomi, Bisnis, dan Akuntansi, 20(3). Budiarto, P. Y., & Sutikno, S. (2017). Deteksi Objek Lubang pada Citra Jalan Raya menggunakan Pengolahan Citra Digital. Jurnal Komputer Terapan, 3(2), 109-118. Djaja, S., Widyastuti, R., Tobing, K., Lasut, D., & Irianto, J. (2016). Gambaran kecelakaan lalu lintas di Indonesia Tahun 2010-2014. Jurnal Ekologi Kesehatan, 15(1), 30-42. Hidayatullah, P., Ferizal, F., Ramadhan, R. H., Qadarsih, B., & Mulyawan, F. (2012). Pendeteksian Lubang di Jalan Secara Semi-Otomatis. Sigma-Mu (Jurnal Penelitian & Gagasan Sains Dan Matematika Terapan), 4(1), 41-51. Hartono, Rudi & Wibisono, Yudi & Sukamto, Rosa. (2017). Damropa (Damage Roads Patrol): Aplikasi Pendeteksi Jalan Rusak Memanfaatkan Accelerometer pada Smartphone. 10.31219/osf.io/yekpr. Siswono, H. (2020). Glasses for the blind using ping ultrasonic, ATMEGA8535 and ISD25120. Telkomnika, 18(2). Kuantama, E., Mardjoko, P., & Saraswati, M. A. (2013, November). Design and Construction of Early flood warning system through SMS based on SIM300C GSM modem. In 2013 3rd International Conference on Instrumentation, Communications, Information Technology and Biomedical Engineering (ICICI-BME) (pp. 115-119). IEEE. Stănescu, T., Moldovan, E. C., & Dolga, V. (2014). Effects Of The Environment Temperature on The Characteristic of Parallax Ping Ultrasonic Sensor. Robotica & Management, 19(2). Hnat, T. W., Griffiths, E., Dawson, R., & Whitehouse, K. (2012, November). Doorjamb: unobtrusive room-level tracking of people in homes using doorway sensors. In Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems (pp. 309-322). Tarulescu, R. (2013). Usage of Parallax ultrasonic sensors in distance measuremnts. tc, 500, 1. Pratama, H., Haritman, E., & Gunawan, T. (2012). Akuisisi data kinerja sensor ultrasonik berbasis sistem komunikasi serial menggunakan mikrokontroler atmega 32. electrans, 11(2), 36-43. Yuliandoko, H., Wardhany, V. A., Pramono, S. H., & Siwindarto, P. (2017, November). Design of flooding detection system based on velocity and water level DAM with ESP8266. In 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE) (pp. 396-401). IEEE. Chwalisz, M. (2016). ThingSpeak Documentation. SL ThingSpeak. http://dx.doi.org/10.28989/avitec.v4i1.1061 Refbacks There are currently no refbacks.
Husny Husny, Freddy Kurniawan, Lasmadi Lasmadi
Published: 12 January 2022
AVITEC, Volume 4, pp 61-74; https://doi.org/10.28989/avitec.v4i1.1181

Abstract:
The fire hazard due to an LPG cylinder explosion can be triggered from a gas cylinder leak. Not infrequently these incidents lead to loss of life and property loss. This study proposes the design of an LPG gas leak monitoring system and early warning of fire hazards. The system is designed to be integrated with the internet network through the Internet of Things (IoT) platform. The MQ-6 sensor module is used to detect LPG gas leaks and a fire sensor to detect fire. The sensor is installed close to the gas outlet source to ensure gas leakage and fire. The data from the sensor is read by the microprocessor and sent to the web server via the interface device. When the concentration of LPG gas in the air exceeds a certain level or a fire is detected, the microprocessor gives a command to turn on the alarm and sends a hazard notification to the smartphone. Hazard notifications, gas concentrations and status of hazard conditions can be accessed in real-time on Android-based smartphones. The results of the tests that have been carried out show that this system can provide information on hazard notification messages and gas concentration values in the range of 1000 - 10000 ppm. The fire detector in this system can detect fires up to a distance of 110 cm from the source of the fire. Then, hazard notifications and gas concentration levels can be accessed via a smartphone with the Kodular web application in the form of a real-time graphic display. Keywords Early-warning, Gas, IoT, LPG Full Text: PDF References Adekitan, A. I., Matthews, V. O., & Olasunkanmi, O. (2018, September). A microcontroller based gas leakage detection and evacuation system. In IOP Conference Series: Materials Science and Engineering (Vol. 413, No. 1, p. 012008). IOP Publishing. Nuga, O. O., Amusa, K. A., & Olanipekun, A. J. (2017). GSM-Based Gas Leakage Detection and Alert System. ABUAD Journal of Engineering Research and Development (AJERD), 1(1), 100-104. Chraim, F., Erol, Y. B., & Pister, K. (2015). Wireless gas leak detection and localization. IEEE Transactions on Industrial Informatics, 12(2), 768-779. Kodali, R. K., Greeshma, R. N. V., Nimmanapalli, K. P., & Borra, Y. K. Y. (2018, December). IOT Based Industrial Plant Safety Gas Leakage Detection System. In 2018 4th International Conference on Computing Communication and Automation (ICCCA) (pp. 1-5). IEEE. Nasir, A. Y., Boniface, A., Hassan, A. M., & Tahir, N. M. (2019). Development of a Gas Leakage Detector with Temperature Control system. Development, 6(12). Detik News (2021) "Rumah Terbakar Dipicu Elpiji Bocor di Bandung, 8 Orang Luka", https://news.detik.com/berita-jawa-barat/d-5739776/rumah-terbakar-dipicu-elpiji-bocor-di-bandung-8-orang-luka, diakses tanggal 21 November 2021. Detik News (2020) "Mobil Bermuatan Gas Elpiji Terbakar di SPBU Cianjur, Satu Tabung Meledak", https://news.detik.com/berita-jawa-barat/d-5224774/mobil-bermuatan-gas-elpiji-terbakar-di-spbu-cianjur-satu-tabung-meledak, diakses tanggal 21 November 2021. Dalaba, M., Alirigia, R., Mesenbring, E., Coffey, E., Brown, Z., Hannigan, M., & Dickinson, K. L. (2018). Liquified petroleum gas (LPG) supply and demand for cooking in northern Ghana. EcoHealth, 15(4), 716-728. Guo, K., Yang, P., Guo, D. H., & Liu, Y. (2019). Gas leakage monitoring with mobile wireless sensor networks. Procedia Computer Science, 154, 430-438. Nasir, A. Y., Bature, U. I., Tahir, N. M., Babawuro, A. Y., Boniface, A., & Hassan, A. M. (2020). Arduino based gas leakage control and temperature monitoring system. International Journal of Information and Communication Technology (IJ-ICT), 9(3), 171-178. Evalina, N., & Azis, H. A. (2020, April). Implementation and design gas leakage detection system using ATMega8 microcontroller. In IOP Conference Series: Materials Science and Engineering (Vol. 821, No. 1, p. 012049). IOP Publishing. Dong, L., Qiao, Z., Wang, H., Yang, W., Zhao, W., Xu, K., ... & Yan, H. (2019). The gas leak detection based on a wireless monitoring system. IEEE Transactions on Industrial Informatics, 15(12), 6240-6251. Attia, H. A., & Ali, H. Y. (2016). Electronic Design of Liquefied Petroleum Gas Leakage Monitoring, Alarm, and Protection System Based on Discrete Components. International Journal of Applied Engineering Research, 11(19), 9721-9726. Sitompul, E., & Rohmat, A. IoT-based Running Time Monitoring System for Machine Preventive Maintenance Scheduling. ELKHA, 13(1), 33-40. Stefanie, A., & Suci, F. C. (2021). Analisis Performansi PLTS Off-Grid 600 Wp menggunakan Data Akuisisi berbasis Internet of Things. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(4), 761. Rahmaddi, R., & Rohmah, R. N. (2021). Sistem Keamanan dan Pengairan Ladang Pertanian Berbasis IOT. Emitor: Jurnal Teknik Elektro, 21(2), 126-134. Hanwei Sensors, Technical Data MQ-6 Gas Sensor, https://www.sparkfun.com/datasheets/Sensors/Biometric/MQ-6.pdf, diakses tanggal 1 November 2021. Everlight (2005). Technical Data Sheet-5mm Phototransistor T-1. Everlight Electronics Co., Ltd. Espressif Systems IOT Team (2015). ESP8266EX Datasheet. Espressif Systems http://bbs.espressif.com/. http://dx.doi.org/10.28989/avitec.v4i1.1181 Refbacks There are currently no refbacks.
Reynaldo Rizkika Putra, Paulus Setiawan, Bambang Sudibya
Published: 12 January 2022
AVITEC, Volume 4, pp 43-60; https://doi.org/10.28989/avitec.v4i1.1163

Abstract:
The problem that often arises lately in electrical motors is the occurrence of voltage imbalances. Unbalanced voltage is an unequal voltage value in a three-phase voltage system contained in an electric power system. On the basis of these problems, it is necessary to conduct research that can analyze the dynamics of the performance of synchronous motors. The frame of reference theory is used to analyze the performance of both synchronous and induction motors. This study implements the modeling of the transformation on the natural axis abc and the transformation on the dq0 axis of the stator and rotor variables in the coordinates of the reference frame. The results of this study indicate that the voltage imbalance from 1% to 5% at the electromagnetic torque has decreased from 8.5 Nm to 6 Nm, the stator current in one phase has increased from 44.2 amperes to 45.2 amperes, the motor rotation speed has decreased from 1820 rpm to 1570 rpm, motor output power decreased from 25550.05 watts to 18968.45 watts, and power efficiency decreased from 98.24% to 82.43%. Keywords Synchrounous Motor, abc Axis, dq Axis, Direct Quadrature, Steady State. Full Text: PDF References Krause, P. C., Wasynczuk, O., Sudhoff, S. D., & Pekarek, S. (2002). Analysis of electric machinery and drive systems, New York: IEEE press, 2(2), 152-156. Khotari, D. P., Nagrath, I. J. (1985). Electrical Machines. New Delhi: McGrawHill companies, 131-136. Setiawan, P. (2019). Analisis Pengaruh Tegangan Tidak Seimbang Pada Kinerja Motor Induksi Menggunakan Metode Transformasi Direct Quadrature. AVITEC, 1(1), 15-28. Ghazali, A. R. (2011). Metode Perhitungan Efisiensi Motor Induksi yang Sedang Beroperasi. Universitas Indonesia. Sendro, Parisro. (2011). Analisis Pengaruh Jatuh Tegangan Terhadap Kerja Motor Induksi Tiga Fasa Menggunakan Matlab. Universitas Sumatera Utara. Satria, Alvon. (2017). Perbaikan Faktor Daya Menggunakan Motor Sinkron dengan Menggunakan Metode Fuzzy Logic Control. Universitas Riau. Krishnan, R. (2001). Electric motor drives: modeling, analysis and control. Prentice Hall, 243-244. Pillay, P., & Krishnan, R. (1988). Modeling of permanent magnet motor drives, IEEE trans. ind. Electronics, 35, 303-307. Ting, J., Tan, Y., Wu, G., & Shumao, W. (2009). Simulation of pmsm vector control system based on matlab/simulink. in Proc. International Conference Measuring Technology and Mechatronics Automation (iCMTMA09) (pp. 343-346). IEEE. Singh, J., Singh, B., Singh, S. P., Chaurasia, R., & Sachan, S. (2012). Performance investigation of permanent magnet synchrounous motor drive using vector controlled technique. in Proc. 2nd International Conference on Power, Control and Embeded Systems (JCPCES) (pp. 1-11). IEEE. http://dx.doi.org/10.28989/avitec.v4i1.1163 Refbacks There are currently no refbacks.
Back to Top Top