Artificial Intelligence Advances

Journal Information
EISSN : 2661-3220
Published by: Bilingual Publishing Co. (10.30564)
Total articles ≅ 33
Filter:

Latest articles in this journal

Elaheh Gavagsaz
Published: 30 April 2022
Artificial Intelligence Advances, Volume 4; https://doi.org/10.30564/aia.v4i1.4668

Abstract:
The k-Nearest Neighbor method is one of the most popular techniques for both classification and regression purposes. Because of its operation, the application of this classification may be limited to problems with a certain number of instances, particularly, when run time is a consideration. However, the classification of large amounts of data has become a fundamental task in many real-world applications. It is logical to scale the k-Nearest Neighbor method to large scale datasets. This paper proposes a new k-Nearest Neighbor classification method (KNN-CCL) which uses a parallel centroid-based and hierarchical clustering algorithm to separate the sample of training dataset into multiple parts. The introduced clustering algorithm uses four stages of successive refinements and generates high quality clusters. The k-Nearest Neighbor approach subsequently makes use of them to predict the test datasets. Finally, sets of experiments are conducted on the UCI datasets. The experimental results confirm that the proposed k-Nearest Neighbor classification method performs well with regard to classification accuracy and performance.
Navid Moshtaghi Yazdani, , Mohammad Hasan Olyaei
Published: 11 April 2022
Artificial Intelligence Advances, Volume 4; https://doi.org/10.30564/aia.v4i1.4361

Abstract:
Safety is an important aim in designing safe-critical systems. To design such systems, many policy iterative algorithms are introduced to find safe optimal controllers. Due to the fact that in most practical systems, finding accurate information from the system is rather impossible, a new online training method is presented in this paper to perform an iterative reinforcement learning based algorithm using real data instead of identifying system dynamics. Also, in this paper the impact of model uncertainty is examined on control Lyapunov functions (CLF) and control barrier functions (CBF) dynamic limitations. The Sum of Square program is used to iteratively find an optimal safe control solution. The simulation results which are applied on a quarter car model show the efficiency of the proposed method in the fields of optimality and robustness.
Mohammad Hasan Olyaei, Ali Olyaei, Sumaya Hamidi
Published: 11 April 2022
Artificial Intelligence Advances, Volume 4; https://doi.org/10.30564/aia.v4i1.4419

Abstract:
The world’s elderly population is growing every year. It is easy to say that the fall is one of the major dangers that threaten them. This paper offers a Trained Model for fall detection to help the older people live comfortably and alone at home. The purpose of this paper is to investigate appropriate methods for diagnosing falls by analyzing the motion and shape characteristics of the human body. Several machine learning technologies have been proposed for automatic fall detection. The proposed research reported in this paper detects a moving object by using a background subtraction algorithm with a single camera. The next step is to extract the features that are very important and generally describe the human shape and show the difference between the human falls from the daily activities. These features are based on motion, changes in human shape, and oval diameters around the human and temporal head position. The features extracted from the human mask are eventually fed in to various machine learning classifiers for fall detection. Experimental results showed the efficiency and reliability of the proposed method with a fall detection rate of 81% that have been tested with UR Fall Detection dataset.
Mengyue Zhang, Jinyong Chen, Gang Wang, Min Wang, Kang Sun
Published: 8 March 2022
Artificial Intelligence Advances, Volume 4; https://doi.org/10.30564/aia.v4i1.4124

Abstract:
Target recognition based on deep learning relies on a large quantity of samples, but in some specific remote sensing scenes, the samples are very rare. Currently, few-shot learning can obtain high-performance target classification models using only a few samples, but most researches are based on the natural scene. Therefore, this paper proposes a metric-based few-shot classification technology in remote sensing. First, we constructed a dataset (RSD-FSC) for few-shot classification in remote sensing, which contained 21 classes typical target sample slices of remote sensing images. Second, based on metric learning, a k-nearest neighbor classification network is proposed, to find multiple training samples similar to the testing target, and then the similarity between the testing target and multiple similar samples is calculated to classify the testing target. Finally, the 5-way 1-shot, 5-way 5-shot and 5-way 10-shot experiments are conducted to improve the generalization of the model on few-shot classification tasks. The experimental results show that for the newly emerged classes few-shot samples, when the number of training samples is 1, 5 and 10, the average accuracy of target recognition can reach 59.134%, 82.553% and 87.796%, respectively. It demonstrates that our proposed method can resolve fewshot classification in remote sensing image and perform better than other few-shot classification methods.
Xinhua Wang, Weikang Wu
Published: 31 October 2021
Artificial Intelligence Advances, Volume 3; https://doi.org/10.30564/aia.v3i2.3878

Abstract:
AI processor, which can run artificial intelligence algorithms, is a state-of-the-art accelerator,in essence, to perform special algorithm in various applications. In particular,these are four AI applications: VR/AR smartphone games, high-performance computing, Advanced Driver Assistance Systems and IoT. Deep learning using convolutional neural networks (CNNs) involves embedding intelligence into applications to perform tasks and has achieved unprecedented accuracy [1]. Usually, the powerful multi-core processors and the on-chip tensor processing accelerator unit are prominent hardware features of deep learning AI processor. After data is collected by sensors, tools such as image processing technique, voice recognition and autonomous drone navigation, are adopted to pre-process and analyze data. In recent years, plenty of technologies associating with deep learning Al processor including cognitive spectrum sensing, computer vision and semantic reasoning become a focus in current research.
Febronie Nambajemariya, Yongshun Wang, Twizerane Jean D’Amour, Kwizera Niyigena Vincent DePaul, Yao Hu
Published: 9 October 2021
Artificial Intelligence Advances, Volume 3; https://doi.org/10.30564/aia.v3i2.3651

Abstract:
With the deployment of Connected and Automated Vehicles in the coming decades, road transportation will experience a significant upheaval. CAVs (Connected and Autonomous Vehicles) have been a main emphasis of Transportation and the automotive sector, and the future of transportation system analysis is widely anticipated. The examination and future development of CAVs technology has been the subject of numerous researches. However, as three essential kinds of road users, pedestrians, bicyclists, and motorcyclists have experienced little to no handling. We explored the influence of CAVs on non-motorized mobility in this article and seven various issues that CAVs face in the environment.
A.G. Reshetnikov, S.V. Ulyanov
Published: 28 September 2021
Artificial Intelligence Advances, Volume 3; https://doi.org/10.30564/aia.v3i2.3849

Abstract:
The technology of knowledge base remote design of the smart fuzzy controllers with the application of the "Soft / quantum computing optimizer" toolkit software developed. The possibility of the transmission and communication the knowledge base using remote connection to the control object considered. Transmission and communication of the fuzzy controller’s knowledge bases implemented through the remote connection with the control object in the online mode apply the Bluetooth or WiFi technologies. Remote transmission of knowledge bases allows designing many different built-in intelligent controllers to implement a variety of control strategies under conditions of uncertainty and risk. As examples, two different models of robots described (mobile manipulator and (“cart-pole” system) inverted pendulum). A comparison of the control quality between fuzzy controllers and quantum fuzzy controller in various control modes is presented. The ability to connect and work with a physical model of control object without using than mathematical model demonstrated. The implemented technology of knowledge base design sharing in a swarm of intelligent robots with quantum controllers. It allows to achieve the goal of control and to gain additional knowledge by creating a new quantum hidden information source based on the synergetic effect of combining knowledge. Development and implementation of intelligent robust controller’s prototype for the intelligent quantum control system of mega-science project NICA (at the first stage for the cooling system of superconducted magnets) is discussed. The results of the experiments demonstrate the possibility of the ensured achievement of the control goal of a group of robots using soft / quantum computing technologies in the design of knowledge bases of smart fuzzy controllers in quantum intelligent control systems. The developed software toolkit allows to design and setup complex ill-defined and weakly formalized technical systems on line.
Sergey Victorovich Ulyanov
Published: 9 August 2021
Artificial Intelligence Advances, Volume 3; https://doi.org/10.30564/aia.v3i2.3171

Abstract:
The quantum self-organization algorithm model of wise knowledge base design for intelligent fuzzy controllers with required robust level considered. Background of the model is a new model of quantum inference based on quantum genetic algorithm. Quantum genetic algorithm applied on line for the quantum correlation’s type searching between unknown solutions in quantum superposition of imperfect knowledge bases of intelligent controllers designed on soft computing. Disturbance conditions of analytical information-thermodynamic trade-off interrelations between main control quality measures (as new design laws) discussed in Part I. The smart control design with guaranteed achievement of these tradeoff interrelations is main goal for quantum self-organization algorithm of imperfect KB. Sophisticated synergetic quantum information effect in Part I (autonomous robot in unpredicted control situations) and II (swarm robots with imperfect KB exchanging between “master - slaves”) introduced: a new robust smart controller on line designed from responses on unpredicted control situations of any imperfect KB applying quantum hidden information extracted from quantum correlation. Within the toolkit of classical intelligent control, the achievement of the similar synergetic information effect is impossible. Benchmarks of intelligent cognitive robotic control applications considered.
Falah Al-Akashi, Diana Inkpen
Published: 9 August 2021
Artificial Intelligence Advances, Volume 3; https://doi.org/10.30564/aia.v3i2.3219

Abstract:
What is a real time agent, how does it remedy ongoing daily frustrations for users, and how does it improve the retrieval performance in World Wide Web? These are the main question we focus on this manuscript. In many distributed information retrieval systems, information in agents should be ranked based on a combination of multiple criteria. Linear combination of ranks has been the dominant approach due to its simplicity and effectiveness. Such a combination scheme in distributed infrastructure requires that the ranks in resources or agents are comparable to each other before combined. The main challenge is transforming the raw rank values of different criteria appropriately to make them comparable before any combination. Different ways for ranking agents make this strategy difficult. In this research, we will demonstrate how to rank Web documents based on resource-provided information how to combine several resources raking schemas in one time. The proposed system was implemented specifically in data provided by agents to create a comparable combination for different attributes. The proposed approach was tested on the queries provided by Text Retrieval Conference (TREC). Experimental results showed that our approach is effective and robust compared with offline search platforms.
Navid Moshtaghi Yazdani
Published: 8 April 2021
Artificial Intelligence Advances, Volume 3; https://doi.org/10.30564/aia.v3i1.3074

Abstract:
In the present paper, a method for reliable estimation of defect profile in CK45 steel structures is presented using an eddy current testing based measurement system and post-processing system based on deep learning technique. So a deep learning method is used to determine the defect characteristics in metallic structures by magnetic field C-scan images obtained by an anisotropic magneto-resistive sensor. Having designed and adjusting the deep convolution neural network and applied it to C-scan images obtained from the measurement system, the performance of deep learning method proposed is compared with conventional artificial neural network methods such as multilayer perceptron and radial basis function on a number of metallic specimens with different defects. The results confirm the superiority of the proposed method for characterizing defects compared to other classical training-oriented methods.
Back to Top Top