Plant Phenomics

Journal Information
EISSN : 2643-6515
Total articles ≅ 82
Current Coverage
DOAJ
PUBMED
PMC
SCIE
Filter:

Latest articles in this journal

Zane K. J. Hartley, , Michael Pound, Andrew P. French
Plant Phenomics, Volume 2021, pp 1-11; https://doi.org/10.34133/2021/9874597

Abstract:
3D reconstruction of fruit is important as a key component of fruit grading and an important part of many size estimation pipelines. Like many computer vision challenges, the 3D reconstruction task suffers from a lack of readily available training data in most domains, with methods typically depending on large datasets of high-quality image-model pairs. In this paper, we propose an unsupervised domain-adaptation approach to 3D reconstruction where labelled images only exist in our source synthetic domain, and training is supplemented with different unlabelled datasets from the target real domain. We approach the problem of 3D reconstruction using volumetric regression and produce a training set of 25,000 pairs of images and volumes using hand-crafted 3D models of bananas rendered in a 3D modelling environment (Blender). Each image is then enhanced by a GAN to more closely match the domain of photographs of real images by introducing a volumetric consistency loss, improving performance of 3D reconstruction on real images. Our solution harnesses the cost benefits of synthetic data while still maintaining good performance on real world images. We focus this work on the task of 3D banana reconstruction from a single image, representing a common task in plant phenotyping, but this approach is general and may be adapted to any 3D reconstruction task including other plant species and organs.
Plant Phenomics, Volume 2021, pp 1-14; https://doi.org/10.34133/2021/9874650

Abstract:
In plant breeding, unmanned aerial vehicles (UAVs) carrying multispectral cameras have demonstrated increasing utility for high-throughput phenotyping (HTP) to aid the interpretation of genotype and environment effects on morphological, biochemical, and physiological traits. A key constraint remains the reduced resolution and quality extracted from “stitched” mosaics generated from UAV missions across large areas. This can be addressed by generating high-quality reflectance data from a single nadir image per plot. In this study, a pipeline was developed to derive reflectance data from raw multispectral UAV images that preserve the original high spatial and spectral resolutions and to use these for phenotyping applications. Sequential steps involved (i) imagery calibration, (ii) spectral band alignment, (iii) backward calculation, (iv) plot segmentation, and (v) application. Each step was designed and optimised to estimate the number of plants and count sorghum heads within each breeding plot. Using a derived nadir image of each plot, the coefficients of determination were 0.90 and 0.86 for estimates of the number of sorghum plants and heads, respectively. Furthermore, the reflectance information acquired from the different spectral bands showed appreciably high discriminative ability for sorghum head colours (i.e., red and white). Deployment of this pipeline allowed accurate segmentation of crop organs at the canopy level across many diverse field plots with minimal training needed from machine learning approaches.
, Mario Serouart, Daniel Smith, , Kaaviya Velumani, , , , Shahameh Shafiee, , et al.
Plant Phenomics, Volume 2021, pp 1-9; https://doi.org/10.34133/2021/9846158

Abstract:
The Global Wheat Head Detection (GWHD) dataset was created in 2020 and has assembled 193,634 labelled wheat heads from 4700 RGB images acquired from various acquisition platforms and 7 countries/institutions. With an associated competition hosted in Kaggle, GWHD_2020 has successfully attracted attention from both the computer vision and agricultural science communities. From this first experience, a few avenues for improvements have been identified regarding data size, head diversity, and label reliability. To address these issues, the 2020 dataset has been reexamined, relabeled, and complemented by adding 1722 images from 5 additional countries, allowing for 81,553 additional wheat heads. We now release in 2021 a new version of the Global Wheat Head Detection dataset, which is bigger, more diverse, and less noisy than the GWHD_2020 version.
, Yanjun Su, , Shilin Song, Qing Li, Zhonghua Liu, Qin Ma, Yan Ge, Lingli Liu, Yanfeng Ding, et al.
Plant Phenomics, Volume 2021, pp 1-15; https://doi.org/10.34133/2021/9895241

Abstract:
Plant growth rhythm in structural traits is important for better understanding plant response to the ever-changing environment. Terrestrial laser scanning (TLS) is a well-suited tool to study structural rhythm under field conditions. Recent studies have used TLS to describe the structural rhythm of trees, but no consistent patterns have been drawn. Meanwhile, whether TLS can capture structural rhythm in crops is unclear. Here, we aim to explore the seasonal and circadian rhythms in maize structural traits at both the plant and leaf levels from time-series TLS. The seasonal rhythm was studied using TLS data collected at four key growth periods, including jointing, bell-mouthed, heading, and maturity periods. Circadian rhythms were explored by using TLS data acquired around every 2 hours in a whole day under standard and cold stress conditions. Results showed that TLS can quantify the seasonal and circadian rhythm in structural traits at both plant and leaf levels. (1) Leaf inclination angle decreased significantly between the jointing stage and bell-mouthed stage. Leaf azimuth was stable after the jointing stage. (2) Some individual-level structural rhythms (e.g., azimuth and projected leaf area/PLA) were consistent with leaf-level structural rhythms. (3) The circadian rhythms of some traits (e.g., PLA) were not consistent under standard and cold stress conditions. (4) Environmental factors showed better correlations with leaf traits under cold stress than standard conditions. Temperature was the most important factor that significantly correlated with all leaf traits except leaf azimuth. This study highlights the potential of time-series TLS in studying outdoor agricultural chronobiology.
Plant Phenomics, Volume 2021, pp 1-16; https://doi.org/10.34133/2021/9871989

Abstract:
Field phenomics has been identified as a promising enabling technology to assist plant breeders with the development of improved cultivars for farmers. Yet, despite much investment, there are few examples demonstrating the application of phenomics within a plant breeding program. We review recent progress in field phenomics and highlight the importance of targeting breeders’ needs, rather than perceived technology needs, through developing and enhancing partnerships between phenomics researchers and plant breeders.
K. Velumani, , , , J. Gillet, ,
Plant Phenomics, Volume 2021, pp 1-16; https://doi.org/10.34133/2021/9824843

Abstract:
Early-stage plant density is an essential trait that determines the fate of a genotype under given environmental conditions and management practices. The use of RGB images taken from UAVs may replace the traditional visual counting in fields with improved throughput, accuracy, and access to plant localization. However, high-resolution images are required to detect the small plants present at the early stages. This study explores the impact of image ground sampling distance (GSD) on the performances of maize plant detection at three-to-five leaves stage using Faster-RCNN object detection algorithm. Data collected at high resolution (GSD0.3cm) over six contrasted sites were used for model training. Two additional sites with images acquired both at high and low (GSD0.6cm) resolutions were used to evaluate the model performances. Results show that Faster-RCNN achieved very good plant detection and counting (rRMSE=0.08) performances when native high-resolution images are used both for training and validation. Similarly, good performances were observed (rRMSE=0.11) when the model is trained over synthetic low-resolution images obtained by downsampling the native training high-resolution images and applied to the synthetic low-resolution validation images. Conversely, poor performances are obtained when the model is trained on a given spatial resolution and applied to another spatial resolution. Training on a mix of high- and low-resolution images allows to get very good performances on the native high-resolution (rRMSE=0.06) and synthetic low-resolution (rRMSE=0.10) images. However, very low performances are still observed over the native low-resolution images (rRMSE=0.48), mainly due to the poor quality of the native low-resolution images. Finally, an advanced super resolution method based on GAN (generative adversarial network) that introduces additional textural information derived from the native high-resolution images was applied to the native low-resolution validation images. Results show some significant improvement (rRMSE=0.22) compared to bicubic upsampling approach, while still far below the performances achieved over the native high-resolution images.
Plant Phenomics, Volume 2021, pp 1-11; https://doi.org/10.34133/2021/9806201

Abstract:
The accurate determination of soybean pubescence is essential for plant breeding programs and cultivar registration. Currently, soybean pubescence is classified visually, which is a labor-intensive and time-consuming activity. Additionally, the three classes of phenotypes (tawny, light tawny, and gray) may be difficult to visually distinguish, especially the light tawny class where misclassification with tawny frequently occurs. The objectives of this study were to solve both the throughput and accuracy issues in the plant breeding workflow, develop a set of indices for distinguishing pubescence classes, and test a machine learning (ML) classification approach. A principal component analysis (PCA) on hyperspectral soybean plot data identified clusters related to pubescence classes, while a Jeffries-Matusita distance analysis indicated that all bands were important for pubescence class separability. Aerial images from 2018, 2019, and 2020 were analyzed in this study. A 60-plot test (2019) of genotypes with known pubescence was used as reference data, while whole-field images from 2018, 2019, and 2020 were used to examine the broad applicability of the classification methodology. Two indices, a red/blue ratio and blue normalized difference vegetation index (blue NDVI), were effective at differentiating tawny and gray pubescence types in high-resolution imagery. A ML approach using a support vector machine (SVM) radial basis function (RBF) classifier was able to differentiate the gray and tawny types (83.1% accuracy and kappa=0.740 on a pixel basis) on images where reference training data was present. The tested indices and ML model did not generalize across years to imagery that did not contain the reference training panel, indicating limitations of using aerial imagery for pubescence classification in some environmental conditions. High-throughput classification of gray and tawny pubescence types is possible using aerial imagery, but light tawny soybeans remain difficult to classify and may require training data from each field season.
Xingche Guo, , Dan Nettleton, Cheng-Ting Yeh, Zihao Zheng, Stefan Hey, Patrick S. Schnable
Plant Phenomics, Volume 2021, pp 1-12; https://doi.org/10.34133/2021/9805489

Abstract:
High-throughput phenotyping enables the efficient collection of plant trait data at scale. One example involves using imaging systems over key phases of a crop growing season. Although the resulting images provide rich data for statistical analyses of plant phenotypes, image processing for trait extraction is required as a prerequisite. Current methods for trait extraction are mainly based on supervised learning with human labeled data or semisupervised learning with a mixture of human labeled data and unsupervised data. Unfortunately, preparing a sufficiently large training data is both time and labor-intensive. We describe a self-supervised pipeline (KAT4IA) that uses K-means clustering on greenhouse images to construct training data for extracting and analyzing plant traits from an image-based field phenotyping system. The KAT4IA pipeline includes these main steps: self-supervised training set construction, plant segmentation from images of field-grown plants, automatic separation of target plants, calculation of plant traits, and functional curve fitting of the extracted traits. To deal with the challenge of separating target plants from noisy backgrounds in field images, we describe a novel approach using row-cuts and column-cuts on images segmented by transform domain neural network learning, which utilizes plant pixels identified from greenhouse images to train a segmentation model for field images. This approach is efficient and does not require human intervention. Our results show that KAT4IA is able to accurately extract plant pixels and estimate plant heights.
Plant Phenomics, Volume 2021, pp 1-12; https://doi.org/10.34133/2021/9834746

Abstract:
Nodules form on plant roots through the symbiotic relationship between soybean (Glycine max L. Merr.) roots and bacteria (Bradyrhizobium japonicum) and are an important structure where atmospheric nitrogen (N2) is fixed into bioavailable ammonia (NH3) for plant growth and development. Nodule quantification on soybean roots is a laborious and tedious task; therefore, assessment is frequently done on a numerical scale that allows for rapid phenotyping, but is less informative and suffers from subjectivity. We report the Soybean Nodule Acquisition Pipeline (SNAP) for nodule quantification that combines RetinaNet and UNet deep learning architectures for object (i.e., nodule) detection and segmentation. SNAP was built using data from 691 unique roots from diverse soybean genotypes, vegetative growth stages, and field locations and has a good model fit (R2=0.99). SNAP reduces the human labor and inconsistencies of counting nodules, while acquiring quantifiable traits related to nodule growth, location, and distribution on roots. The ability of SNAP to phenotype nodules on soybean roots at a higher throughput enables researchers to assess the genetic and environmental factors, and their interactions on nodulation from an early development stage. The application of SNAP in research and breeding pipelines may lead to more nitrogen use efficiency for soybean and other legume species cultivars, as well as enhanced insight into the plant-Bradyrhizobium relationship.
Plant Phenomics, Volume 2021; https://doi.org/10.34133/2021/9792582

Abstract:
Plant segmentation and trait extraction for individual organs are two of the key challenges in high-throughput phenotyping (HTP) operations. To address this challenge, the Ag Alumni Seed Phenotyping Facility (AAPF) at Purdue University utilizes chlorophyll fluorescence images (CFIs) to enable consistent and efficient automatic segmentation of plants of different species, age, or color. A series of image analysis routines were also developed to facilitate the quantitative measurements of key corn plant traits. A proof-of-concept experiment was conducted to demonstrate the utility of the extracted traits in assessing drought stress reaction of corn plants. The image analysis routines successfully measured several corn morphological characteristics for different sizes such as plant height, area, top-node height and diameter, number of leaves, leaf area, and angle in relation to the stem. Data from the proof-of-concept experiment showed how corn plants behaved when treated with different water regiments or grown in pot of different sizes. High-throughput image segmentation and analysis basing on a plant's fluorescence image was proved to be efficient and reliable. Extracted trait on the segmented stem and leaves of a corn plant demonstrated the importance and utility of this kind of trait data in evaluating the performance of corn plant under stress. Data collected from corn plants grown in pots of different volumes showed the importance of using pot of standard size when conducting and reporting plant phenotyping data in a controlled-environment facility.
Back to Top Top