APOS Trends in Orthodontics

Journal Information
ISSN / EISSN : 2321-4600 / 2321-1407
Published by: Scientific Scholar (10.25259)
Total articles ≅ 347
Current Coverage
Archived in

Latest articles in this journal

Saeed Noorollahian, Marzie Kachuie, , Majid Moghadam, Tahmineh Narimani
APOS Trends in Orthodontics pp 1-6; https://doi.org/10.25259/apos_14_2022

Objectives: Anchorage preservation is crucial in orthodontic treatment success. Mini-implants make a revolution in this domain. The failure of orthodontic mini-implants due to inflammation and infection is one of the reasons for anchorage loss. The purpose of this study was to evaluate the effect of a novel mini-implant surface modification to improve resistance against microbial contamination and surrounding tissue inflammation. Material and Methods: Twenty-four orthodontic mini-implants (Jeil Medical Corporation, Korea) with 1.6 mm diameter and 8 mm length were randomly divided into three groups: Group 1: Control group, Group 2: Nanotubes were made on the surface with anodisation, and Group 3: Zinc Oxide (ZnO) doped into nanotubes, and then doxycycline is added to them. The anti-bacterial efficacy against Porphyromonas gingivalis was evaluated using the disk diffusion method. To analyze data, Kruskal–Wallis, Friedman, and Wilcoxon tests were done. The significance level was set at 0.05. Results: No zone of the inhibition was formed in Groups 1 and 2. In Group 3, the mean (SD) diameter of the inhibition zone in the first 5-day to sixth 5-day were 38.7(8.2), 25(4.8), 17.8(5.6), 7.63(5.37), 1.5(2.83), and 0 millimeters, respectively. Conclusion: Nanotubes containing doped ZnO and Doxycycline are capable of preventing bacterial growth around the mini implant surfaces for at least up to 30 days. To manage inflammation of surrounding tissues of mini-implants, nanotubes are not effective alone. Therefore, the presence of diffusible materials in addition to nanotubes on the surface of mini-implants is necessary.
, Ashwin Mathew George, Ravindra Kumar Jain, Arthi Balasubramaniam, M. Srirengalakshmi, Nikhilesh R. Vaid
APOS Trends in Orthodontics pp 1-12; https://doi.org/10.25259/apos_6_2022

Objective: The aim of this systematic review and meta-analysis was to report on the effects of using platelet-rich derivatives on the rate of tooth movement. Material and Methods: Both electronic and manual searches were performed with specific eligibility criteria based on population, intervention, comparison, outcome, and study design. Risk of bias (RoB) assessment was done using the Cochrane RoB tool 2, the data were pooled and analyzed using review manager 4.5, and certainty of the evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation approach. Two independent reviewers performed the study selection, data extraction, and analysis. Nine studies were included for qualitative analysis and two of them were subjected to meta-analysis. Results: The standard mean difference for the rate of canine distal movement with platelet-rich derivatives was not significantly higher than controls at any of the time intervals (P > 0.0001). Rotation of canines, molar mesialization, and pain scores were not affected by the administration of platelet-rich derivatives for accelerating tooth movement. A moderate to high RoB was noted in the included studies and the certainty of the available evidence as assessed by the GRADE approach was moderate. Conclusion: The included studies presented with high heterogeneity and more high-quality studies with strict protocols are needed. Even though individual studies report significant acceleration of tooth movement following administration of PR derivatives, moderate certainty of evidence suggests no acceleratory effect on tooth movement.
Simon Graf, Moritz Berger,
APOS Trends in Orthodontics pp 1-8; https://doi.org/10.25259/apos_27_2022

Objectives: This study aimed to evaluate the printing procedure and printing axis and its influence on the dimensional accuracy, surface roughness, porosity, and strength of 3D-printed dental alloys used in orthodontics prepared using binder jetting (BJ), electron beam melting (EBM), or selective laser melting (SLM). Material and Methods: Specimens with a dimension of 50 mm × 12 mm were produced using BJ, EBM, and SLM techniques of dental alloys and were printed either along the X-, Y-, or Z-axis (n = 8 per group). Specimen dimension was chosen according to the ISO standard 6892-1 for tensile strength test specimens. Surface roughness parameters Sa, Sz, Sq, and Ssk were obtained using a 3D laser microscope and porosities were visualized with scanning electron microscopy (SEM). The specimen surfaces were optically scanned and volumetric deviations from the original stereolithography files were calculated. Afterward, tensile strength was measured. Results: The printing method and printing axis significantly affected surface roughness parameters (P < 0.05). Overall, the lowest surface roughness Sa values were found for BJ (9.1 ± 3.4 µm) followed by SLM (39.8 ± 24.2 µm) and EBM (50.4 ± 6.4 µm). BJ showed the smallest dimensional deviation followed by EBM and SLM. SEM analysis revealed a porous structure of BJ while fewer pores were observed on EBM and SLM samples. The ultimate tensile strength was only determined for BJ (495 ± 6 MPa) and EBM (726 ± 50 MPa) as the strength of SLM superseded the strength of the holder of the universal testing machine. Conclusion: BJ printing provides the highest dimensional accuracy with the smoothest surfaces irrespective of the printing axis. However, the remaining porosities owed to this printing procedure may have decreased the strength of the material.
Sila Caglayan Topal, Nurdan Ozmeric, Serenay Elgun,
APOS Trends in Orthodontics pp 1-7; https://doi.org/10.25259/apos_137_2021

Objectives: The objectives of the study were to evaluate oxidative stress biomarkers during a rapid maxillary expansion (RME). Material and Methods: Fourteen patients were treated with an acrylic RME device, and after treatment, all were followed for 3 months. Saliva samples were collected before activation (baseline), 1st, 10th days after the first activation, and after retention. Periodontal indexes were recorded at baseline and after retention. Nitric oxide (NO) and malondialdehyde (MDA) levels were evaluated. Results: NO levels were elevated on the 10th day compared to baseline (P < 0.01), revealing a decrease after retention (P < 0.01). MDA levels were increased on the 10th day and after retention periods compared to baseline (P < 0.01, respectively). Both plaque and gingival indexes increased after retention relative to baseline (P < 0.01, respectively). Conclusion: Initial stages of orthopedic force increased salivary oxidative stress biomarkers. Long-term results showed decreased levels of NO, but still high MDA levels. The initially increased NO expression decreased after retention, despite the increase in microbial load at this period which might show the effect of mechanical stimuli to be more effective than the microbial load. MDA levels remained at high levels during the post-retention period, arising a possible consideration for the impact of material properties or deficiencies of oral hygiene. Future long-term evaluations for oxidative stress status and orthodontic appliances would be useful.
, Mohammad Zoheb, S. Priyanka
APOS Trends in Orthodontics pp 1-7; https://doi.org/10.25259/apos_26_2022

Objectives: The study aimed to identify and evaluate changes in the cephalometric position of Point A due to an incisal inclination change caused by orthodontic treatment in non-growing Class II division 2 patients. Material and Methods: A total of 24 pairs of consecutive pre-treatment and post-treatment lateral cephalograms were systematically collected from the departmental database and hand traced. The total change in the position of Point A was investigated by superimposing pre-treatment and post-treatment lateral cephalograms at a stable basicranial line. The treatment changes in maxillary incisor inclination, the sagittal position of Point A, SNA angle, movement of incisor root apex, and incisal edge were calculated. Results: The mean SNA angle was reduced significantly suggesting that the A point had moved backward solely due to orthodontic remodeling. Point A distance to true vertical was reduced significantly (mean 1.2 mm), suggesting that local remodeling has occurred due to orthodontic treatment. The incisal edge also moved forward significantly (mean 2.6 mm). The apex of the upper incisor moved significantly backward as a result of its counterclockwise rotation (mean 3.2 mm). The upper incisor to palatal plane values also showed a highly significant change in inclination of the upper incisors (mean 12.30). Conclusion: Counter-clockwise rotation of the upper incisor causing its root apex to move more palatally makes remodeling changes in Point A in the form of its retraction roughly by one-third the amount of the backward movement of the upper incisors’ root apex. Moreover, it can be inferred that the retraction of Point A in millimeters will roughly be equal to the reduction in SNA angle in degrees.
Serdar Gözler,
APOS Trends in Orthodontics pp 1-9; https://doi.org/10.25259/apos_19_2022

Objectives: It shows that patients receiving orthodontic treatment may have a risk of developing temporomandibular disorder symptoms. The aim of this study is to examine the changes in the chewing system of occlusal contact parameters related to joint vibrations, chewing patterns, and measured excursive movements in fixed and non-extractive orthodontic treatments. Material and Methods: A total of 43 individuals with premolar extraction (n = 23) and without extraction (n = 20) who applied to the Department of Orthodontics, Dentistry Faculty of Istanbul Aydin University and needed orthodontic treatment were included in the study. In this study, 43 active fixed orthodontic treatment patients were conducted at the beginning (T0) and 6th month (T1) and 12th month (T2) on the parameter recorded during chewing. For occlusion analysis, T-Scan® computerized occlusion analysis recording and examination of the chewing pattern were used for JVA and JT temporomandibular joint parameters. Depending on whether the data showed normal distribution or not, differences between groups were evaluated using the Mann–Whitney or independent t-test, and intragroup differences were evaluated using the Wilcoxon sign test or paired t-test. Results: At the beginning, 6th month and 12th month of orthodontic treatment, it was observed that the opening, closing, and occlusion times and joint vibration frequencies in the chewing pattern in cases with and without tooth extraction, the integral value differences of total integral, and frequencies below 300 Hz and above 300 Hz were statistically significant (P < 0.001). In digital occlusion analysis values, the right-left differences were not found statistically significant in the measurements made in cases with and without extraction (P > 0.05), while there were statistically significant differences in disclusion values at the beginning, 6th and 12th months (P < 0.05). Conclusion: At the beginning of the orthodontic treatments with or without extraction, it was observed that the values at the joint level changed significantly in the 6th month. However, the changes in the joints during the treatment, when they return to their ideal values at the end of the 12th month, are more than the change in occlusion.
, Nivethigaa Balakrishnan
APOS Trends in Orthodontics pp 1-6; https://doi.org/10.25259/apos_138_2021

Objectives: Landmark identification is of utmost importance in cephalometric analysis but it turns out to be the main source of error. With modern inventions in the field of artificial intelligence (AI), it becomes essential to assess the reliability of computer-automated programs. A greater deal of time can be conserved with fully automated programs such as WebCeph, which uses an AI-based algorithm that performs automated and immediate cephalometric analysis. This study aimed to evaluate the accuracy, reliability, and duration of tracing cephalometric radiographs with WebCeph, an AI-based software in comparison to digital tracing with FACAD and manual tracing. The null hypothesis proposed is that there is no statistically significant difference among the three methods with regard to accuracy of cephalometric analysis. Material and Methods: Pre-treatment cephalometric radiographs of 25 patients (14 males and 11 females, mean age of 18 ± 3.2 years) were selected randomly from the dental information archiving software of Saveetha University, Department of Orthodontics, Chennai. Composite analysis with skeletal, dental and soft-tissue parameters was selected and cephalometric analysis was done with all three methods – Manual tracing (Group 1), digital tracing using FACAD (Group 2), and fully automated AI-based software WebCeph (Group 3). The timing for each method of analysis was calculated using a stopwatch in seconds. Values were tabulated in an Excel sheet and statistical analysis including one-way analysis of variance and post hoc Tukey test were performed. Results: No statistically significant difference was found between the three methods for cephalometric analysis, P > 0.05. The time taken for measurement using the three different methods was the least while using WebCeph (30.2 ± 6.4 s) and the maximum while manual tracing (472 ± 40.4 s). Conclusion: WebCeph is a reliable, faster and practical tool for analyzing cephalometric analysis in comparison to digital tracing using FACAD and manual tracing.
Anindya Kamaratih, , Misaki Aoyagi, Zuisei Kanno, Takashi Ono
APOS Trends in Orthodontics pp 1-9; https://doi.org/10.25259/apos_167_2021

Objectives: The objective of the study was to investigate the relationship between anterior open bite (AOB) malocclusion and digestion by evaluating mastication and gastric emptying (GE) of a solid meal. Material and Methods: We recruited 26 female participants and divided them into two groups according to their occlusion status: The control group with normal occlusion (n = 11; age: 25.2 ± 2.8 years; and body mass index [BMI]: 21.1 ± 1.9 kg/m2) and the AOB group with AOB malocclusion (n = 15; age: 23.2 ± 5.5 years; BMI: 21.0 ± 1.6 kg/m2). GE, chewing, and occlusion were assessed simultaneously. A food questionnaire survey was also administered on the same day. Results: A significant positive correlation was noted between open bite and the occlusal analysis findings. Negative correlations were found between the food questionnaire score and both the open bite and occlusal analysis findings, which confirmed that AOB affects mastication. However, no significant difference in the GE rate parameters was observed between the two groups. Conclusion: Adaptive mechanisms may have a compensatory effect on the GE rate. However, the lack of tooth contact in the anterior occlusal region resulted in reduced masticatory ability. Orthodontic treatment should thus be considered, regardless of the presence of digestive problems, to improve mastication.
, Dolly Patel
APOS Trends in Orthodontics pp 1-6; https://doi.org/10.25259/apos_182_2021

Objectives: The optimum adhesive thickness present between bracket base and tooth surface plays an important role in achieving ideal treatment outcome in straight wire technique. As thickness of adhesive largely depends on amount of force applied while bonding an orthodontic brackets on the tooth surface. Therefore, it becomes prudent to find direct and accurate method to quantify the bonding force. The aim of this paper was to describe the design and working of novel bracket positioning gauge with force sensor which directly quantifies the amount of bonding force applied by orthodontists. Material and Methods: The present prototype is a bracket positioning gauge where load cell and vertical stopper blade are fixed on base platform. The force sensing blade attached to load cell detects the force applied and transmit to load cell which converts compressive force into an analogue signals. These inputs are then converted into digital signals for further processing. The prototype was tested five times by ten orthodontists for measuring bonding force while orthodontic brackets were bonded on extracted premolars. The same procedure was repeated after seven days to assess the reproducibility and reliability of prototype. Results: The majority of orthodontists participated in present study applied bonding force between the ranges of 50-200 grams with the mean bonding force applied by participant orthodontists was similar in time interval of seven days with 134.67 grams and 132.76 grams respectively. Conclusion: The novel bracket positioning gauge with force sensor was able to measure compressive bonding force accurately and can aid in achieving optimum adhesive thickness for clinically acceptable bond strength. The present innovation needs further refinements to be more useful in clinical settings.
, Shiori Oka, Kazunori Fukui
APOS Trends in Orthodontics pp 1-5; https://doi.org/10.25259/apos_158_2021

This case report describes the treatment of a 15-year-old girl showing Angle’s Class II Division 1 malocclusion with maxillary prognathism and marked labial inclination of the maxillary anterior teeth, which was characterized by a large overjet, overjet occlusion, and mild crowding in the lower jaw. Our treatment completed without root resorption as a result of the combined use of a wire mechanism and anchors has rarely been reported before. The left and right maxillary first premolars were extracted, a temporary anchorage device (TAD) was used for space closure, and oral hygiene maintenance guidance was provided. The total treatment time was approximately 2 years and 7 months. Ideal overjet and overbite relationships were established, and the facial profile improved substantially. The 2-year follow-up assessment showed a morphologically and functionally stable result. For patients with marked maxillary prognathism, orthodontic treatment using TADs enables simultaneous and efficient maxillary anterior tooth retraction and reduction of overjet. Moreover, this treatment has the potential to shorten the treatment duration and contribute to the long-term stability of excessive overjet correction.
Back to Top Top