Modern Electronic Materials

Journal Information
ISSN / EISSN : 2452-2449 / 2452-1779
Published by: Pensoft Publishers (10.3897)
Total articles ≅ 85
Current Coverage

Latest articles in this journal

Dmitriy G. Muratov, Lev V. Kozhitov, Egor V. Yakushko, Andrey A. Vasilev, Alena V. Popkova, Vitaly A. Tarala, Evgeniy Yu. Korovin
Published: 30 September 2021
Modern Electronic Materials, Volume 7, pp 99-108;

Magnetic nanoparticles play an important role in rapidly developing advanced branches of science and industry, e.g. fabrication of magnetic storage media, synthesis of ferromagnetic liquids, medicine and chemistry. One problem faced in the usage of magnetic nanoparticles is their high chemical activity leading to oxidation in air and agglomeration. The chemical activity of magnetic nanoparticles stems from the contribution of their large specific surface to volume ratio. Carbon coating of nanoparticles reduces the interaction between nanoparticles. FeCoAl/C metal-carbon nanocomposites have been synthesized using IR pyrolysis of polymer/metal salt precursors. The effect of synthesis temperature (IR heating) in the range from 500 to 700 °C on the structure and composition of the nanomaterials has been studied. We show that the forming particles are the FeCoAl ternary solid solution with a FeCo based bcc lattice. An increase in the synthesis temperature from 500 to 700 °C leads to an increase in the coherent scattering region of three-component nanoparticles from 5 to 19 nm. An increase in the aluminum content from 20 to 30% relative to Fe and Co results in an increase in the size of the nanoparticles to 15 nm but this also entails the formation of a Co based solid solution having an fcc lattice. An increase in the nanocomposite synthesis temperature and a growth of the relative Al content as a result of a more complete carbonization and the structure-building effect of metals reduce the degree of amorphousness of the nanocomposite carbon matrix and lead to the formation of graphite-like phase crystallites having an ordered structure. The effect of synthesis temperature and relative content of metals on the electromagnetic properties (complex permittivity and permeability) of the synthesized nanocomposites has been studied. Synthesis conditions affect the radio absorption properties of the nanocomposites, e.g. reflection loss (RL) in the 3–13 GHz range.
Published: 30 September 2021
Modern Electronic Materials, Volume 7, pp 91-97;

Granular films containing Fe50Co50Zr10 alloy nanoparticles inside Pb0,81Sr0,04(Na0,5Bi0,5)0,15(Zr0,575Ti0,425)O3 (PZT) ferroelectric matrix possess a combination of functional magnetic and electrical properties which can be efficiently controlled by means of external electric or magnetic fields. The formation of the required granular structure in PZT matrix is only possible if synthesis is carried out in an oxygen-containing atmosphere leading to substantial oxidation of metallic nanoparticles. Thus an important task is to study the oxidation degree of metallic nanoparticles depending on synthesis conditions and the effect of forming phases on the electrical properties of the films. The relationship between the structural and phase state and electrical properties of granular FeCoZr)x (PZT)100-x films (30 ≤ x ≤ 85 at.%) synthesized in an oxygen-containing atmosphere at the oxygen pressure PO in a range of (2.4–5.0) · 10–3 Pa has been studied using X-ray diffraction, EXAFS and four-probe electrical resistivity measurement. Integrated comparative analysis of the structural and phase composition and local atomic order in (FeCoZr)x (PZT)100-x films has for the first time shown the fundamental role of oxygen pressure PO during synthesis on nanoparticle oxidation and phase composition. We show that the oxygen pressure being within PO = 3.2 · 10–3 Pa an increase in x leads to a transition from nanoparticles of Fe(Co,Zr)O complex oxides to a superposition of complex oxides and a-FeCo(Zr,O) ferromagnetic nanoparticles (or their agglomerations). At higher oxygen pressures РО = 5.0 · 10–3 Pa the nanoparticles undergo complete oxidation with the formation of the (FexCo1-x)1-δO complex oxide having a Wurtzite structure. The forming structural and phase composition allows one to explain the observed temperature dependences of the electrical resistivity of granular films. These dependences are distinguished by a negative temperature coefficient of electrical resistivity over the whole range of film compositions at a high oxygen pressure (РО = 5.0 · 10–3 Pa) and a transition to a positive temperature coefficient of electrical resistivity at a lower oxygen pressure (РО = 3.2 · 10–3 Pa) in the synthesis atmosphere and x > 69 at.% in the films. The transition from a negative to a positive temperature coefficient of electrical resistivity which suggests the presence of a metallic contribution to the conductivity is in full agreement with the X-ray diffraction and EXAFS data indicating the persistence of unoxidized a-FeCo(Zr,O) ferromagnetic nanoparticles or their agglomerations.
Published: 30 September 2021
Modern Electronic Materials, Volume 7, pp 85-90;

Magnetization is a key property of magnetic materials. Nevertheless, a satisfactory, analytical description of the temperature dependence of magnetization in double perovskites such as strontium ferromolybdate is still missing. In this work, we develop, for the very first time, a model of the magnetization of nanosized, magnetically inhomogeneous Sr2FeMoO6-δ nanoparticles. The temperature dependence of magnetization was approximated by an equation consisting of a Bloch-law spin wave term, a higher order spin wave correction, both taking into account the temperature dependence of the spin-wave stiffness, and a superparamagnetic term including the Langevin function. In the limit of pure ferromagnetic behavior, the model is applicable also to SFMO ceramics. In the vicinity of the Curie temperature (T/TC > 0.85), the model fails.
Kirill A. Brekhov, , Andrey V. Kudryavtsev, Nikita A. Ilyin
Published: 30 September 2021
Modern Electronic Materials, Volume 7, pp 109-113;

Quasi-2D layers of transition metal dichalcogenides are promising candidates for creating saturable absorbers for pulsed lasers. However, the peculiarities of intense electromagnetic radiation’s influence on such structures have not been thoroughly studied. This paper explores the dynamics of photoexcited carriers in WSe2 flakes through experimental studies. These studies found that WSe2 flakes significantly change their optical properties under the influence of a high-power optical pump, allowed estimating the thermalization time of these structures (about 2 ps), and found that full relaxation takes more than 10 ps. The concentration of carriers in the semiconductor surface layer was estimated to be about 1028 m–3. It was found that standard description models of the optical response based on exciton resonances and absorption by free carriers could not adequately describe the experiments’ results. Thus, for an accurate description of the optical response, it was necessary to consider the effects associated with Coulomb screening that are caused by the high concentration of photo-excited carriers of the optical pumping densities used in this experiment.
Tatyana G. Yugova, Aleksandr G. Belov, Vladimir E. Kanevskii, Evgeniya I. Kladova, Stanislav N. Knyazev, Irina B. Parfent'Eva
Published: 30 September 2021
Modern Electronic Materials, Volume 7, pp 79-84;

A theoretical model has been developed for determining the free electron concentration in n-InAs specimens from characteristic points in far IR reflection spectra. We show that this determination requires plasmon-phonon coupling be taken into account, otherwise the measured electron concentration proves to be overestimated. A correlation between the electron concentration Nopt and the characteristic wavenumber ν+ has been calculated and proves to be well fit by a third order polynomial. The test specimens have been obtained by tin or sulfur doping of indium arsenide. The electron concentration in the specimens has been measured at room temperature using two methods: the optical method developed by the Authors (Nopt) and the conventional four-probe Hall method (the Van der Pau method, NHall). The reflecting surfaces of the specimens have been chemically polished or fine abrasive ground. The condition Nopt > NHall has been shown to hold for all the test specimens. The difference between the optical and the Hall electron concentrations is greater for specimens having polished reflecting surfaces. The experimental data have been compared with earlier data for n-GaAs. A qualitative model explaining the experimental data has been suggested.
Roman Yu. Kozlov, Svetlana S. Kormilitsina, Elena V. Molodtsova, Eugene O. Zhuravlev
Modern Electronic Materials, Volume 7, pp 73-78;

Currently there is a worldwide trend to increase the diameter of crystals grown from elemental semiconductors and semiconductor compounds. According to literary data the diameter of 3–5 semiconductor single crystals grown nowadays is 4 to 6 inches. So far up to 75 mm indium antimonide single crystals have been grown in Russia. Indium antimonide is the element base for the widest field of solid state electronics, i.e., optoelectronics. Indium antimonide is used for the fabrication of 3–5 mm range linear photodetectors and photodetector arrays used as light-sensitive material in heat vision systems. Growth heat conditions have been selected and 100 mm [100] indium antimonide single crystals have been grown using the modified two-stage Czochralski technique. The graphite heating unit has been oversized to accommodate a 150 mm crucible and a 4.5–5 kg load. The results of the work have provided for a substantial increase in the yield of photodetectors. The electrophysical properties of the as-grown single crystals have been studied using the Van der Pau method and proved to be in agreement with the standard parameters of undoped indium antimonide. Using the 9-field etch method of pit counting under an optical microscope the dislocation density in the 100 mm single crystals has been measured to be ≤ 100 cm-2which is similar to that for 50 mm single crystals.
Kira L. Enisherlova, Lev A. Seidman, Ella M. Temper, Yuliy A. Kontsevoy
Modern Electronic Materials, Volume 7, pp 63-71;

The effect of parameters of plasma enhanced chemical vapor deposition (PECVD) processes for SiNx film fabrication on the electrical parameters of dielectric/АlGaN/GaN structures has been studied. The effect of growing film composition, additional heterostructure surface treatment with nitrogen plasma before dielectric deposition and HF biasing during treatment on the parameters of the С–V and I–V curves of SiNx/АlGaN/GaN structures has been analyzed. We show that films with nitrogen to silicon concentration ratios of 60 and 40% and a high oxygen content exhibit a decrease in the positive fixed charge in the structures although the I–V curves of the structures exhibit current oscillations. Information has been reported on the effect of PECVD process mode on current oscillation parameters, e.g. period and amplitude, and length of I–V curve section in which oscillations occur. Possible explanation of these oscillations has been suggested. Additional nitrogen plasma treatment of heterostructure surface before monosilane supply to the chamber changes the magnitude and sign of fixed charge and reduces the free carrier concentration in the 2D gas channel of SiNx/АlGaN/GaN heterostructures. Experimental evidence has been provided for the effect of PECVD process parameters and surface preparation on the electrical parameters of the heterostructures grown.
Pavel V. Shalaev, Polina A. Monakhova, Sergey A. Tereshchenko
Modern Electronic Materials, Volume 7, pp 53-61;

Five samples of liquid dispersions of colloidal gold nanorods having various aspect ratios have been studied using light scattering methods. Transmission electron microscopy has been employed as a reference method. Advantages and drawbacks of dynamic light scattering and nanoparticle tracking analysis methods for study of nanoparticle geometrical parameters and concentration, sample monodispersity degree and detection of large particle aggregations and quasispherical impurities have been demonstrated. We show that depolarized dynamic light scattering method can be used for analysis of geometrical parameters of colloidal gold nanorods in liquid dispersions. The measurement results depend largely on the presence of large impurity particles or particle aggregations in samples. In turn the presence of large particles in dispersions can be detected using dynamic light scattering methods or nanoparticle tracking analysis. Dynamic light scattering method is more sensitive to the presence of even small quantities of large impurities or aggregations in samples. The monodispersity degree of nanorod liquid dispersions can also be assessed using dynamic light scattering and nanoparticle tracking analysis methods, and the measurement results can be considered more statistically significant in comparison with electron microscopy because a larger number of particles are analyzed. An increase in the concentration of spherical particles in compound dispersions of colloidal gold nanospheres and nanorods leads to a decrease in the contribution of the rotational mode to the overall scattering intensity. Data on the concentration of quasispherical impurities in samples of colloidal gold nanorod liquid dispersions have been reported on the basis of scattered light depolarization degree measurements.
Andrey N. Aleshin, Nikolay V. Zenchenko, Oleg A. Ruban
Modern Electronic Materials, Volume 7, pp 45-51;

The operation of the TiN/HfO2/Pt bipolar memristor has been simulated by the finite elements method using the Maxwell steady state equations as a mathematical basis. The simulation provided knowledge of the effect of conductive filament thickness on the shape of the I–V curve. The conductive filament has been considered as the highly conductive Hf ion enriched HfOx phase (x < 2) whose structure is similar to a Magneli phase. In this work a mechanism has been developed describing the formation, growth and dissolution of the HfOx phase in bipolar mode of memristor operation which provides for oxygen vacancy flux control. The conductive filament has a cylindrical shape with the radius varying within 5–10 nm. An increase in the thickness of the conductive filament leads to an increase in the area of the hysteresis loop of the I–V curve due to an increase in the energy output during memristor operation. A model has been developed which allows quantitative calculations and hence can be used for the design of bipolar memristors and assessment of memristor heat loss during operation.
Vladimir N. Jarkin, Oleg A. Kisarin, Tatyana V. Kritskaya
Modern Electronic Materials, Volume 7, pp 33-43;

Novel technical solutions and ideas for increasing the yield of solar and semiconductor grade polycrystalline silicon processes have been analyzed. The predominant polycrystalline silicon technology is currently still the Siemens process including the conversion of technical grade silicon (synthesized by carbon-thermal reduction of quartzites) to trichlorosilane followed by rectification and hydrogen reduction. The cost of product silicon can be cut down by reducing the trichlorosilane synthesis costs through process and equipment improvement. Advantages, drawbacks and production cost reduction methods have been considered with respect to four common trichlorosilane synthesis processes: hydrogen chloride exposure of technical grade silicon (direct chlorination, DC), homogeneous hydration of tetrachlorosilane (conversion), tetrachlorosilane and hydrogen exposure of silicon (hydro chlorination silicon, HC), and catalyzed tetrachlorosilane and dichlorosilane reaction (redistribution of anti-disproportioning reaction). These processes remain in use and are permanently improved. Catalytic processes play an important role on silicon surface, and understanding their mechanisms can help find novel applications and obtain new results. It has been noted that indispensable components of various equipment and process designs are recycling steps and combined processes including active distillation. They provide for the most complete utilization of raw trichlorosilane, increase the process yield and cut down silicon cost.
Back to Top Top