Mohyla Mathematical Journal

Journal Information
ISSN / EISSN : 2617-7080 / 2663-0648
Current Publisher: National University of Kyiv - Mohyla Academy (10.18523)
Total articles ≅ 17
Filter:

Latest articles in this journal

Yaroslav Drin, Yuri Ushenko, Iryna Drin, Svitlana Drin
Mohyla Mathematical Journal, Volume 2, pp 41-45; doi:10.18523/2617-70802201941-45

Abstract:
Поняття фрактала є однiєю з основних парадигм сучасної теоретичної та експериментальної фiзики, радiофiзики та радiолокацiї, а дробове числення є математичною основою фрактальної фiзики, геотермальної енергiї та космiчної електродинамiки та iнших. Ми дослiджуємо розв’язнiсть задачi Кошi для лiнiйних та нелiнiйних неоднорiдних псевдодиференцiальних рiвнянь дифузiї. Рiвняння мiстить дробову похiдну за часовою змiнною типу Рiмана–Лiувiлля, визначену Капуто, та псевдодиференцiальний оператор, який дiє за просторовими змiнними i побудований за однорiдним, невiд’ємного порядку однорiдностi, негладким у початку координат символом, достатньо гладким за межами початку координат. Неоднорiднiсть рiвняння залежить вiд часової i просторових змiнних та допускає перетворення Лапласа за часовою змiнною. Початкова умова мiстить обмежену функцiю. Мета: показати, що метод гомотопiчної пертурбацiї HPTM (homotopy perturbation transform method) легко застосовувати до лiнiйних та нелiнiйних неоднорiдних псевдодиференцiальних рiвнянь дифузiї. Довести розв’язностi та отримання формули для розв’язку у виглядi ряду задачi Кошi для вказаних лiнiйних та нелiнiйних рiвнянь дифузiї. Методи. Задача розв’язується методом НPTM, який поєднує перетворення Лапласа (Laplaсe transform) за часовою змiнною i метод гомотопiчної пертурбацiї (HPM – homotopy perturbation method). Пiсля перетворення Лапласа отримуємо iнтегральне рiвняння, розв’язок якого шукаємо у виглядi ряду за степенями введеного параметра з невiдомими коефiцiєнтами. Пiсля пiдстановки введеної формули для розв’язку у iнтегральне рiвняння прирiвнюємо вирази бiля однакових степенiв параметра i отримуємо формули для невiдомих коефiцiєнтiв. При розв’язуваннi нелiнiйного рiвняння використовується спецiальний полiномiал, який входить в коефiцiєнти розкладу нелiнiйної функцiї i дозволяє застосувати метод гомотопiчної пертурбацiї i для нелiнiйного неоднорiдного псевдодиференцiального рiвняння дифузiї. Результатом є розв’язок задачi Кошi для дослiджуваного рiвняння дифузiї, який подається у виглядi ряду, членами якого є знайденi функцiї з параметричного ряду. В цiй працi вперше доведена розв’язнiсть та отримана формула для розв’язку задачi Кошi у виглядi ряду для лiнiйних та нелiнiйних неоднорiдних псевдодиференцiальних рiвнянь дифузiї.
Andrii Oliynyk, Bogdana Oliynyk
Mohyla Mathematical Journal, Volume 2, pp 3-5; doi:10.18523/2617-7080220193-5

Abstract:
Статтю присвячено пам’ятi видатного українського математика i педагога, одного iз засновникiв київської школи теорiї зображень i теорiї кiлець, професора Київського нацiонального унiверситету iменi Тараса Шевченка Володимира Васильовича Кириченка.
Yuri Hakopian
Mohyla Mathematical Journal, Volume 2, pp 11-23; doi:10.18523/2617-70802201911-23

Abstract:
Обернене вiдображення Мура–Пенроуза є найбiльш поширеним вiдображенням, що використовується для пошуку оберненої матрицi. Це вiдображення має численнi застосування як у теорiї матриць, так i в обчислювальнiй лiнiйнiй алгебрi. Вiдомо, що обернена матриця Мура–Пенроуза може бути отримана через сингулярний розклад. Найефективнiший з iснуючих алгоритмiв складається з двох крокiв. На першому кроцi, використовуючи вiдображення Хаусхолдера, початкова матриця зводиться до верхнього двудiагонального вигляду (алгоритм Голуба–Кахана). Другий крок вiдомий у науковiй лiтературi як алгоритм Голуба–Райнша. Ця iтерацiйна процедура за допомогою методу Гiвенса генерує послiдовнiсть двудiагональних матриць, яка збiгається до дiагонального вигляду. В такий спосiб отримується iтерацiйне наближення до сингулярного розкладу двудiагональної матрицi. Головною метою цiєї статтi є розробка методу, який можна розглядати як альтернативну замiну алгоритму Голуба–Райнша. За допомогою реалiзацiї запропонованого, було отримано два головнi результати. По-перше, виведено явнi формули для елементiв обернених матриць Мура–Пенроуза для двудiагональних матриць. По-друге, використовуючи цi формули, побудовано скiнченний рекурсивний алгоритм, оптимальної обчислювальної складностi. Таким чином, запропоновано варiант обчислення оберненої матрицi Мура–Пенроуза для двудiагональних матриць, що не використовує сингулярний розклад.
Mohyla Mathematical Journal, Volume 2, pp 33-40; doi:10.18523/2617-70802201933-40

Abstract:
Найменшу за потужнiстю множину M ∈ V скiнченного графа G = (V, E) таку, що для будь-якої пари вершин u, v ∈ V iснує принаймнi одна вершина t ∈ M, для якої має мiсце нерiвнiсть dG(t, v) 6= dG(t, u), називають метричним базисом, а потужнiсть множини M – метричною розмiрнiстю. Оскiльки, як вiдомо, пошук метричної розмiрностi для довiльного графа є NP-важкою проблемою, то пошук метричної розмiрностi графiв обмежують пошуком для певних родин графiв. Для унiциклiчних графiв, тобто графiв, що мiстять рiвно один цикл, пiсля вилучення ребра можна отримати дерево. Метою статтi є встановлення зв’язку мiж унiциклiчним графом, що має метричну розмiрнiсть 2, та метричними розмiрностями його кiстякових дерев залежно вiд способу вилучення ребра.
Yevgeniya Kochubinska, Hanna Chelnokova
Mohyla Mathematical Journal, Volume 2, pp 24-32; doi:10.18523/2617-70802201924-32

Abstract:
У роботi розглядаються неповнi збалансованi блок-схеми – системи k-елементних пiдмножин (блокiв) деякої скiнченної множини елементiв, таких, що кожний елемент мiститься в r блоках та кожна пара елементiв мiститься в λ блоках. Блок-схеми були введенi для планування статистичних дослiджень та згодом отримали багато iнших використань. На блок-схемi можна визначити частковi неперервнi вiдображення, тобто такi частковi вiдображення, при яких прообразом кожного блоку є блок або пуста множина. Наведено основнi вiдомi властивостi часткових неперервних вiдображень на блок-схемах. Однiєю з важливих властивостей, що, зокрема, дає необхiдну умову iснування неперервних часткових вiдображень на данiй блок-схемi, є лема однорiдностi: для непустого неперервного часткового вiдображення на блок-схемi кiлькiсть елементiв у (непустому) прообразi кожного елемента фiксована i дорiвнює числу d, що дiлить розмiр блокiв k. Дуальна гiпотеза однорiдностi припускає, що кожен блок, що є прообразом якогось iншого блоку, має бути прообразом фiксованого числа блокiв. Виконання цiєї гiпотези дозволило б отримати не менш важливу властивiсть блок-схем i неперервних вiдображень на них та отримати новий спосiб побудови блок-схем, як образiв блок-схем при неперервних вiдображеннях. Основним новим результатом роботи є контрприклад до дуальної гiпотези однорiдностi, який був побудований як складена блок-схема – блок-схема, множина блокiв якої розбивається на групи блокiв, кожна з яких утворює блоксхему на тiй самiй множинi елементiв. В останньому роздiлi отримано двi необхiднi умови складеностi блок-схеми. Також у роботi наводиться спосiб зведення задачi пошуку блок-схеми з заданими параметрами до задачi булевої або псевдобулевої виконуваностi. Наведено явний алгоритм побудови систем булевих або псевдобулевих виразiв еквiвалентних задачi пошуку блок-схеми та продемонстровано результати застосування до вiдповiдних задач iснуючих програм для їх розв’язку.
Anatolii Petravchuk, Kateryna Sysak
Mohyla Mathematical Journal, Volume 2, pp 6-10; doi:10.18523/2617-7080220196-10

Abstract:
Нехай K – довiльне поле характеристики нуль, A = K[x1, . . . , xn] – кiльце многочленiв та R = = K(x1, . . . , xn) – поле рацiональних функцiй вiд n змiнних над K. Алгебра Лi Wn(K) всiх K- диференцiювань кiльця A становить великий iнтерес, оскiльки її елементи можуть розглядатися як векторнi поля на Kn з полiномiальними коефiцiєнтами. Якщо L пiдалгебра iз Wn(K), то можна визначити ранг rkAL пiдалгебри L над кiльцем A як розмiрнiсть векторного простору RL над полем R. Скiнченновимiрнi (над K) пiдалгебри рангу 1 над A вивчалися першим автором разом з I. Аржанцевим та Є. Македонським. Ми вивчаємо розв’язнi пiдалгебри L алгебри Лi Wn(K) з rkAL = 1, без обмежень на розмiрнiсть над K. Дано опис таких алгебр Лi в термiнах многочленiв Дарбу.
Mariana Leskiv, Nataliia Shchestyuk
Mohyla Mathematical Journal, Volume 2, pp 46-50; doi:10.18523/2617-70802201946-50

Abstract:
Невiдповiднiсть теоретичних цiн деривативiв, отриманих за формулою Блека–Шоулза, та ринкових цiн спонукає дослiдникiв до пошукiв бiльш точних та витончених моделей фiнансових ринкiв. Наразi не викликає сумнiвiв, що волатильнiсть, як параметр мiнливостi фiнансового ринку внаслiдок появи «гарних» i «поганих» новин, не є константою i може бути розглянутою як стохастичний процес. Моделi фiнансового ринку, побудованi за таким пiдходом, мають назву моделей стохастичної волатильностi i вони вiдомi, починаючи з дослiджень Р. Єнгля. У роботi у якостi удосконалення цього пiдходу запропоновано так званi моделi хаотичної волатильностi, якi утворюються з вiдомих моделей стохастичної волатильностi ARCH, GARCH, EGARCH за допомогою використання послiдовностей «динамiчного хаосу» замiсть бiлого шуму. Iдея iснування фрактального ринку та застосування «динамiчного хаосу» обговорювалась ще в роботах Б. Мандельброта, Ю. Фама, А. Ширяєва та iнших. А. Ширяєв у своїх роботах вказує, що поведiнка послiдовностей «динамiчного хаосу» при певних значеннях параметрiв є схожою на поведiнку «бiлого» шуму. В роботi серед представникiв хаотичних послiдовносей було обрано логiстичну послiдовнiсть. Для реальних даних було побудовано три моделi з класу авторегресивних гетероскедастичних моделей iз стохастичною та хаотичною волатильнiстю. Було розглянуто криву впливу новин як стандартну мiру того, що новини включенi в оцiнку волатильностi. Було виявлено асиметричну реакцiю волатильностi на свiтовi позитивнi та негативнi новини. Ефект асиметрiї найкраще враховано у ЕGARCH моделi i на практицi доведено, що ця модель найкраще описує змiну ситуацiї на ринку цiнних паперiв та деривативiв. Спрогнозовано теоретичну цiну акцiй з використанням моделей стохастичної та хаотичної волатильностi. Провiвши порiвняльний аналiз модельних цiн з ринковою цiною за допомогою обчислення вiдносної похибки, можна побачити, що запропонованi у статтi моделi з хаотичною волатильнiстю мають меншi вiдноснi похибки.
Vita Olshevska
Mohyla Mathematical Journal, Volume 1, pp 30-33; doi:10.18523/2617-7080i2018p30-33

Abstract:
У статтi наведено алгоритм перевiрки, чи є певна множина елементiв S мiнiмальною системою твiрних для силовської 2-пiдгрупи знакозмiнної групи Syl2(A2n), за допомогою системи комп’ютерної алгебри GAP. Для невеликих n (n = 3 i n = 4) проведено обчислення за допомогою цього алгоритму. Зокрема, перевiрено абелевiсть, пораховано потужнiсть та кiлькiсть елементiв мiнiмальної системи твiрних комутантiв у кожнiй з груп Syl2(A8), Syl2(A16) та фактор-групах цих силовських 2-пiдгруп по комутанту.
Yuriy Mytnyk, Oleksii Kashpirovski, Bogdana Oliynyk
Mohyla Mathematical Journal, Volume 1, pp 3-5; doi:10.18523/2617-7080i2018p3-5

Abstract:
Статтю присвячено 150-й рiчницi вiд дня народження видатного українського математика Георгiя Феодосiйовича Вороного. Описано його життєвий шлях, основнi математичнi результати i публiкацiї.
Galyna Kriukova
Mohyla Mathematical Journal, Volume 1, pp 15-20; doi:10.18523/2617-7080i2018p15-20

Abstract:
Прихованi марковськi моделi — добре вiдомi ймовiрнiснi графiчнi моделi для часових рядiв дискретних, частково спостережуваних стохастичних процесiв. Ми розглядаємо спосiб розширити застосування прихованих марковських моделей до негаусових неперервних розподiлiв за допомогою занурення апрiорного ймовiрнiсного розподiлу простору станiв у гiльбертiв простiр iз вiдтворюючим ядром. Вiдповiднi методи регуляризацiї запропоновано для зменшення схильностi до перенавчання та обчислювальної складностi алгоритму, наприклад, метод пiдвибiрки Нiстрома та узагальнене сiмейство регуляризацiйних функцiй застосовуються пiд час побудови обернених ядерної та ознакової матриць. Цей метод може бути використаний у рiзних задачах статистичного виведення, зокрема класифiкацiї, передбачення, iдентифiкацiї, сегментацiї, а також як онлайн-алгоритм — для динамiчної обробки даних та обробки потоку даних. Далi ми наводимо приклад застосування методу до прикладних задач, порiвнюємо запропонований пiдхiд iз сучасними алгоритмами.Метою дослiдження є розробка методiв регуляризацiї обернених задач, що виникають на стадiї навчання ймовiрнiсних графiчних моделей, в яких уявлення про розподiл занурено в гiльбертiв простiр iз вiдтворюючим ядром. Основною методикою реалiзацiї є застосування узагальненого сiмейства регуляризацiйних функцiй та дискретної регуляризацiї, зокрема метод Нiстрома, до вiдповiдних обернених задач обертання матриць ядра та ознак. Задачу вибору вiдповiдних регуляризацiйних змiнних та параметрiв ядра, що визначає гiльбертiв простiр, розв’язано за допомогою методу лiнiйної функцiональної стратегiї, тобто ансамблю рiшень, побудованих iз...
Back to Top Top