Journal of Applied Glycoscience

Journal Information
ISSN / EISSN : 13447882 / 18807291
Total articles ≅ 721
Current Coverage

Latest articles in this journal

Daisuke Suzuki, Yuko Sato, Hiroshi Kamasaka, Takashi Kuriki
Journal of Applied Glycoscience; doi:10.5458/jag.jag.jag-2020_0001

Phosphoryl oligosaccharides of calcium (POs-Ca) is a calcium salt of phosphoryl maltooligosaccharides made from potato starch. POs-Ca is highly water-soluble and can supply both the calcium ion and acidic oligosaccharides in an aqueous solution. In this study, we investigated the effects of POs-Ca on the mycelial growth and fruiting body yield of Pleurotus ostreatus, which is one of the most widely cultivated edible mushrooms in the world. We cultivated the mushroom using both potato dextrose agar (PDA) medium and sawdust-based medium, with added calcium salts. The addition of POs-Ca into the PDA medium with a calcium concentration of 10 mg increased mycelial growth significantly (p < 0.05, vs. control). POs-Ca addition to the sawdust-based medium at concentrations of 1.0 to 3.0 g/100 g medium increased the amount of calcium in the fruiting bodies but did not affect the length of the cultivation period or the weight of the fruiting body. The calcium content in the fruiting body increased 12-fold when compared to the control. On the other hand, neither the CaHPO4・2H2O group nor the CaHPO4・2H2O with oligosaccharides group showed changes in the calcium content of the fruiting bodies. Our results indicate that the use of POs-Ca in mushroom cultivation allows for the possibility of developing new functional foods like calcium-enriched edible mushrooms. This is the first report describing the effects of POs-Ca on mushroom cultivation.
Kiyohiko Igarashi, Satoshi Kaneko, Motomitsu Kitaoka, Masahiro Samejima
Journal of Applied Glycoscience, Volume 67, pp 51-57; doi:10.5458/jag.jag.jag-2020_0003

Cellobiose dehydrogenase (CDH) is a flavocytochrome catalyzing oxidation of the reducing end of cellobiose and cellooligosaccharides, and has a key role in the degradation of cellulosic biomass by filamentous fungi. Here, we use a lineup of glucose/xylose-mixed β-1,4-linked disaccharides and trisaccharides, enzymatically synthesized by means of the reverse reaction of cellobiose phosphorylase and cellodextrin phosphorylase, to investigate the substrate recognition of CDH. We found that CDH utilizes β-D-xylopyranosyl-(1→4)-D-glucopyranose (Xyl-Glc) as an electron donor with similar Km and kcat values to cellobiose. β-D-Glucopyranosyl-(1→4)-D-xylopyranose (Glc-Xyl) shows a higher Km value, while xylobiose does not serve as a substrate. Trisaccharides show similar behavior; i.e., trisaccharides with cellobiose and Xyl-Glc units at the reducing end show similar kinetics, while the enzyme was less active towards those with Glc-Xyl, and inactive towards those with xylobiose. We also use docking simulation to evaluate substrate recognition of the disaccharides, and we discuss possible molecular mechanisms of substrate recognition by CDH.
Masakazu Ike, Ken Tokuyasu
Journal of Applied Glycoscience, Volume 67, pp 59-62; doi:10.5458/jag.jag.jag-2019_0019

The aim of this study was to investigate the effect of pH control by CO2 pressurization on the enzymatic hydrolysis of herbaceous feedstock in the calcium capturing by carbonation (CaCCO) process for fermentable sugar production. The pH of the slurry of 5% (w/w) Ca(OH)2-pretreated/CO2-neutralized rice straw could be controlled between 5.70 and 6.38 at 50 °C by changing the CO2 partial pressure (pCO2) from 0.1 to 1.0 MPa. A mixture of fungal enzyme preparations, namely, Trichoderma reesei cellulases/hemicellulases and Aspergillus niger β-glucosidase, indicated that pH 5.5–6.0 is optimal for solubilizing sugars from Ca(OH)2-pretreated rice straw. Enzymatic saccharification of pretreated rice straw under various pCO2 conditions revealed that the highest soluble sugar yields were obtained at pCO2 0.4 MPa and over, which is consistent with the expected pH at the pCO2 without enzymes and demonstrates the effectiveness of pH control by CO2 pressurization.
Yu Teshigahara, Ikuko Kakizaki, Wataru Hirao, Kanji Tanaka, Ryoki Takahashi
Journal of Applied Glycoscience, Volume 67, pp 63-66; doi:10.5458/jag.jag.jag-2019_0021

The publisher has not yet granted permission to display this abstract.
Hiromi Takada, Toshihiko Katoh, Takane Katayama
Journal of Applied Glycoscience, Volume 67, pp 31-39; doi:10.5458/jag.jag.jag-2019_0020

The publisher has not yet granted permission to display this abstract.
Atsushi Kawano, Kansuke Fukui, Yuji Matsumoto, Atsushi Terada, Akihiro Tominaga, Nozomi Nikaido, Takashi Tonozuka, Kazuhide Totani, Nozomu Yasutake
Journal of Applied Glycoscience, Volume 67, pp 41-49; doi:10.5458/jag.jag.jag-2019_0015

According to whole-genome sequencing, Aspergillus niger produces multiple enzymes of glycoside hydrolases (GH) 31. Here we focus on a GH31 α-glucosidase, AgdB, from A. niger. AgdB has also previously been reported as being expressed in the yeast species, Pichia pastoris; while the recombinant enzyme (rAgdB) has been shown to catalyze tranglycosylation via a complex mechanism. We constructed an expression system for A. niger AgdB using Aspergillus nidulans. To better elucidate the complicated mechanism employed by AgdB for transglucosylation, we also established a method to quantify glucosidic linkages in the transglucosylation products using 2D NMR spectroscopy. Results from the enzyme activity analysis indicated that the optimum temperature was 65 °C and optimum pH range was 6.0–7.0. Further, the NMR results showed that when maltose or maltopentaose served as the substrate, α-1,2-, α-1,3-, and small amount of α-1,1-β-linked oligosaccharides are present throughout the transglucosylation products of AgdB. These results suggest that AgdB is an α-glucosidase that serves as a transglucosylase capable of effectively producing oligosaccharides with α-1,2-, α-1,3-glucosidic linkages.
Yuya Furushiro, Takashi Kobayashi
Journal of Applied Glycoscience, Volume 67, pp 11-15; doi:10.5458/jag.jag.jag-2019_0014

The publisher has not yet granted permission to display this abstract.
Ken Fukami, Daiki Suehiro, Motoko Ohnishi
Journal of Applied Glycoscience, Volume 67, pp 1-9; doi:10.5458/jag.jag.jag-2019_0013

We examined the in vitro digestibility of maltobionic acid, obtained from enzymatic oxidation of maltose, its utilization by intestinal bacteria, and its biological effects on the bowel movements in healthy subjects. We found that maltobionic acid is not digested in vitro by saliva, gastric juice, or pancreatic juice. Moreover, it is digested only to a small extent by small intestinal enzymes. Among the 24 strains of intestinal bacteria, maltobionic acid was selectively utilized by Bifidobacterium dentium and Bi. adolescentis. We also evaluated the influence of long-term ingestion of maltobionic acid calcium salt on bowel movements in healthy Japanese women by a randomized, double-blind, placebo-controlled, crossover trial. Thirty-four subjects completed the study, and no adverse events related to the test food were observed. Ten subjects were excluded prior to the efficacy analysis because of conflict with the control criteria; the remaining 24 subjects were analyzed. Intake of test food containing 4 g maltobionic acid for 4 weeks caused a significant increase in the stool frequency, significant improvement in stool form scale and CAS-MT total scores as compared with the placebo group. These results suggest that maltobionic acid is an indigestible carbohydrate and is a promising therapeutic agent for improving the intestinal environment.
Sosyu Tsutsui, Kiyoshi Sakuragi, Kiyohiko Igarashi, Masahiro Samejima, Satoshi Kaneko
Journal of Applied Glycoscience, Volume 67, pp 17-22; doi:10.5458/jag.jag.jag-2019_0017

The publisher has not yet granted permission to display this abstract.
Hisashi Ashida, Taku Fujimoto, Shin Kurihara, Masayuki Nakamura, Masahiro Komeno, Yibo Huang, Takane Katayama, Takashi Kinoshita, Kaoru Takegawa
Journal of Applied Glycoscience, Volume 67, pp 23-29; doi:10.5458/jag.jag.jag-2019_0016

Bifidobacterium longum subsp. infantis ATCC 15697 possesses five α-L-fucosidases, which have been previously characterized toward fucosylated human milk oligosaccharides containing α1,2/3/4-linked fucose [Sela et al.: Appl. Environ. Microbiol., 78, 795-803 (2012)]. In this study, two glycoside hydrolase family 29 α-L-fucosidases out of five (Blon_0426 and Blon_0248) were found to be 1,6-α-L-fucosidases acting on core α1,6-fucose on the N-glycan of glycoproteins. These enzymes readily hydrolyzed p-nitrophenyl-α-L-fucoside and Fucα1-6GlcNAc, but hardly hydrolyzed Fucα1-6(GlcNAcβ1-4)GlcNAc, suggesting that they de-fucosylate Fucα1-6GlcNAcβ1-Asn-peptides/proteins generated by the action of endo-β-N-acetylglucosaminidase. We demonstrated that Blon_0426 can de-fucosylate Fucα1-6GlcNAc-IgG prepared from Rituximab using Endo-CoM from Cordyceps militaris. To generate homogenous non-fucosylated N-glycan-containing IgG with high antibody-dependent cellular cytotoxicity (ADCC) activity, the resulting GlcNAc-IgG has a potential to be a good acceptor substrate for the glycosynthase mutant of Endo-M from Mucor hiemalis. Collectively, our results strongly suggest that Blon_0426 and Blon_0248 are useful for glycoprotein glycan remodeling.
Back to Top Top