Scientific Reports

Journal Information
ISSN / EISSN : 2045-2322 / 2045-2322
Current Publisher: Springer Science and Business Media LLC (10.1038)
Total articles ≅ 127,597
Current Coverage
Archived in

Latest articles in this journal

Gregory R. Keele, Jeremy W. Prokop, Hong He, Katie Holl, John Littrell, Aaron W. Deal, Yunjung Kim, Patrick B. Kyle, Esinam Attipoe, Ashley C. Johnson, et al.
Scientific Reports, Volume 11, pp 1-15; doi:10.1038/s41598-021-81550-8

Chronic kidney disease (CKD), which can ultimately progress to kidney failure, is influenced by genetics and the environment. Genes identified in human genome wide association studies (GWAS) explain only a small proportion of the heritable variation and lack functional validation, indicating the need for additional model systems. Outbred heterogeneous stock (HS) rats have been used for genetic fine-mapping of complex traits, but have not previously been used for CKD traits. We performed GWAS for urinary protein excretion (UPE) and CKD related serum biochemistries in 245 male HS rats. Quantitative trait loci (QTL) were identified using a linear mixed effect model that tested for association with imputed genotypes. Candidate genes were identified using bioinformatics tools and targeted RNAseq followed by testing in a novel in vitro model of human tubule, hypoxia-induced damage. We identified two QTL for UPE and five for serum biochemistries. Protein modeling identified a missense variant within Septin 8 (Sept8) as a candidate for UPE. Sept8/SEPTIN8 expression increased in HS rats with elevated UPE and tubulointerstitial injury and in the in vitro hypoxia model. SEPTIN8 is detected within proximal tubule cells in human kidney samples and localizes with acetyl-alpha tubulin in the culture system. After hypoxia, SEPTIN8 staining becomes diffuse and appears to relocalize with actin. These data suggest a role of SEPTIN8 in cellular organization and structure in response to environmental stress. This study demonstrates that integration of a rat genetic model with an environmentally induced tubule damage system identifies Sept8/SEPTIN8 and informs novel aspects of the complex gene by environmental interactions contributing to CKD risk.
Hadi Tavakkoli, Ahmad Khosravi, Iraj Sharifi, Zohreh Salari, Ehsan Salarkia, Reza Kheirandish, Kazem Dehghantalebi, Maziar Jajarmi, Seyedeh Saedeh Mosallanejad, Shahriar Dabiri, et al.
Scientific Reports, Volume 11, pp 1-16; doi:10.1038/s41598-021-81592-y

Candida albicans (C. albicans) is the most common cause of candidiasis in humans and animals. This study was established to a new experimental infection model for systemic candidiasis using partridge and embryonated partridge egg. First, we tested the induction of systemic candidiasis in partridge and embryonated partridge egg. Finally, interaction between virulence factors of C. albicans and Bcl-2 family members was predicted. We observed that embryonic infection causes a decrease in survival time and at later embryonic days (11–12th), embryos showed lesions. Morphometric analysis of the extra-embryonic membrane (EEM) vasculature showed that vascular apoptotic effect of C. albicans was revealed by a significant reduction in capillary area. In immunohistochemistry assay, low expression of Bcl-2 and increased expression of Bax confirmed apoptosis. The gene expression of Bax and Bcl-2 was also altered in fungi-exposed EEM. Ourin silico simulation has shown an accurate interaction between aspartic proteinase, polyamine oxidase, Bcl-2 and BAX. We observed that the disease was associated with adverse consequences, which were similar to human candidiasis. Acquired results support the idea that partridge and embryonated partridge egg can be utilized as appropriate preclinical models to investigate the pathological effects of candidiasis.
Yuyun Li, Dongming Wang, Lili Zhi, Yunmei Zhu, Lan Qiao, Yan Zhu, Xin Hu, Qian Wang, Yuan Cao, Yan Gao, et al.
Scientific Reports, Volume 11, pp 1-6; doi:10.1038/s41598-021-81558-0

To describle how respiratory tract infections (RTIs) that occurred in children with allergic asthma (AA) on allergen immunotherapy (AIT) during an influenza season. Data including clinical symptoms and treatment history of children (those with AA on AIT and their siblings under 14 years old), who suffered from RTIs during an influenza season (Dec 1st, 2019–Dec 31st, 2019), were collected (by face to face interview and medical records) and analyzed. Children on AIT were divided into 2 groups: stage 1 (dose increasing stage) and stage 2 (dose maintenance stage). Their siblings were enrolled as control. During the study period, 49 children with AA on AIT (33 patients in stage 1 and 16 patients in stage 2) as well as 49 children without AA ( their siblings ) were included. There were no significant differences in occurrences of RTIs among the three groups (p > 0.05). Compared with children in the other two groups, patients with RTIs in stage 2 had less duration of coughing and needed less medicine. Children on AIT with maintenance doses had fewer symptoms and recovered quickly when they were attacked by RTIs, which suggested that AIT with dose maintenance may enhance disease resistance of the body.
Ting-Bi Hua, Cheng-Xiong Liu, Wei-Min Hu, Long Wang, Qing-Qing Yang
Scientific Reports, Volume 11, pp 1-6; doi:10.1038/s41598-021-81370-w

An efficient [4 + 1] annulation between α-bromooximes and sulfur ylides via in situ generation of nitrosoalkenes under mild basic reaction conditions has been developed, providing an expeditious and scalable approach to synthesize biologically interesting isoxazoline derivatives with good to excellent yields.
Junya Ohyama, Airi Hirayama, Nahoko Kondou, Hiroshi Yoshida, Masato Machida, Shun Nishimura, Kenji Hirai, Itsuki Miyazato, Keisuke Takahashi
Scientific Reports, Volume 11, pp 1-10; doi:10.1038/s41598-021-81403-4

Dozens of Cu zeolites with MOR, FAU, BEA, FER, CHA and MFI frameworks are tested for direct oxidation of CH4 to CH3OH using H2O2 as oxidant. To investigate the active structures of the Cu zeolites, 15 structural variables, which describe the features of the zeolite framework and reflect the composition, the surface area and the local structure of the Cu zeolite active site, are collected from the Database of Zeolite Structures of the International Zeolite Association (IZA). Also analytical studies based on inductively coupled plasma-optical emission spectrometry (ICP-OES), X-ray fluorescence (XRF), N2 adsorption specific surface area measurement and X-ray absorption fine structure (XAFS) spectral measurement are performed. The relationships between catalytic activity and the structural variables are subsequently revealed by data science techniques, specifically, classification using unsupervised and supervised machine learning and data visualization using pairwise correlation. Based on the unveiled relationships and a detailed analysis of the XAFS spectra, the local structures of the Cu zeolites with high activity are proposed.
Julian Kleine-Borgmann , Katharina Schmidt, Marieke Billinger, Katarina Forkmann, Katja Wiech, Ulrike Bingel
Scientific Reports, Volume 11, pp 1-11; doi:10.1038/s41598-021-81502-2

Psychological distress is prevalent in students and can predispose to psychiatric disorders. Recent findings indicate that distress might be linked to impaired cognitive performance in students. Experimental findings in healthy participants suggest that placebo interventions can improve cognition. However, whether non-deceptive (i.e., open-label, OLP) placebos can enhance cognitive function and emotional well-being is unclear. Using a randomized-controlled design we demonstrate a positive impact of OLP on subjective well-being (i.e., stress, fatigue, and confusion) after a 21-day OLP application in healthy students during midterm exams. OLP did not improve test performance, but, within the OLP group, test performance was positively correlated with measures of general belief in the benefit of medication. These results show that OLP can counteract negative effects of acute stress on psychological well-being and might improve cognitive performance if supported by positive treatment expectations. Additionally, our findings in healthy volunteers warrant further investigation in exploring the potential of OLP in reducing stress-related psychological effects in patients. The trial was preregistered at the German Clinical Trials Register on December 20, 2017 (DRKS00013557).
Thanuja D. K. Herath, Richard P. Darveau, Chaminda J. Seneviratne, Cun-Yu Wang, Yu Wang, Lijian Jin
Scientific Reports, Volume 11, pp 1-3; doi:10.1038/s41598-021-81798-0

An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Johann Zwirner, Benjamin Ondruschka, Mario Scholze, Gundula Schulze-Tanzil, Niels Hammer
Scientific Reports, Volume 11, pp 1-11; doi:10.1038/s41598-020-80448-1

The human temporal muscle fascia (TMF) is used frequently as a graft material for duraplasty. Encompassing biomechanical analyses of TMF are lacking, impeding a well-grounded biomechanical comparison of the TMF to other graft materials used for duraplasty, including the dura mater itself. In this study, we investigated the biomechanical properties of 74 human TMF samples in comparison to an age-matched group of dura mater samples. The TMF showed an elastic modulus of 36 ± 19 MPa, an ultimate tensile strength of 3.6 ± 1.7 MPa, a maximum force of 16 ± 8 N, a maximum strain of 13 ± 4% and a strain at failure of 17 ± 6%. Post-mortem interval correlated weakly with elastic modulus (r = 0.255, p = 0.048) and the strain at failure (r = − 0.306, p = 0.022) for TMF. The age of the donors did not reveal significant correlations to the TMF mechanical parameters. Compared to the dura mater, the here investigated TMF showed a significantly lower elastic modulus and ultimate tensile strength, but a larger strain at failure. The human TMF with a post-mortem interval of up to 146 h may be considered a mechanically suitable graft material for duraplasty when stored at a temperature of 4 °C.
Razieh Morad, Mahmood Akbari, Parham Rezaee, Amin Koochaki, Malik Maaza, Zahra Jamshidi
Scientific Reports, Volume 11, pp 1-9; doi:10.1038/s41598-021-81617-6

From the first month of the COVID-19 pandemic, the potential antiviral properties of hydroxychloroquine (HCQ) and chloroquine (CQ) against SARS-CoV-2 suggested that these drugs could be the appropriate therapeutic candidates. However, their side effects directed clinical tests towards optimizing safe utilization strategies. The noble metal nanoparticles (NP) are promising materials with antiviral and antibacterial properties that can deliver the drug to the target agent, thereby reducing the side effects. In this work, we applied both the quantum mechanical and classical atomistic molecular dynamics approaches to demonstrate the adsorption properties of HCQ/CQ on Ag, Au, AgAu, and Pt nanoparticles. We found the adsorption energies of HCQ/CQ towards nanoparticles have the following trend: PtNP > AuNP > AuAgNP > AgNP. This shows that PtNP has the highest affinity in comparison to the other types of nanoparticles. The (non)perturbative effects of this drug on the plasmonic absorption spectra of AgNP and AuNP with the time-dependent density functional theory. The effect of size and composition of NPs on the coating with HCQ and CQ were obtained to propose the appropriate candidate for drug delivery. This kind of modeling could help experimental groups to find efficient and safe therapies.
Christine Unsicker, Flavia-Bianca Cristian, Manja Von Hahn, Volker Eckstein, Gudrun A. Rappold, Simone Berkel
Scientific Reports, Volume 11, pp 1-15; doi:10.1038/s41598-021-81241-4

SHANK2 mutations have been identified in individuals with neurodevelopmental disorders, including intellectual disability and autism spectrum disorders (ASD). Using CRISPR/Cas9 genome editing, we obtained SH-SY5Y cell lines with frameshift mutations on one or both SHANK2 alleles. We investigated the effects of the different SHANK2 mutations on cell morphology, cell proliferation and differentiation potential during early neuronal differentiation. All mutant cell lines showed impaired neuronal differentiation marker expression. Cells with bi-allelic SHANK2 mutations revealed diminished apoptosis and increased proliferation, as well as decreased neurite outgrowth during early neuronal differentiation. Bi-allelic SHANK2 mutations resulted in an increase in p-AKT levels, suggesting that SHANK2 mutations impair downstream signaling of tyrosine kinase receptors. Additionally, cells with bi-allelic SHANK2 mutations had lower amyloid precursor protein (APP) expression compared to controls, suggesting a molecular link between SHANK2 and APP. Together, we can show that frameshift mutations on one or both SHANK2 alleles lead to an alteration of neuronal differentiation in SH-SY5Y cells, characterized by changes in cell growth and pre- and postsynaptic protein expression. We also provide first evidence that downstream signaling of tyrosine kinase receptors and amyloid precursor protein expression are affected.
Back to Top Top