PLOS Biology

Journal Information
ISSN / EISSN : 1544-9173 / 1545-7885
Published by: Public Library of Science (PLoS) (10.1371)
Total articles ≅ 6,498
Current Coverage
Archived in

Latest articles in this journal

, Stefan Kahl, Ashakur Rahaman, Holger Klinck
The BirdNET App, a free bird sound identification app for Android and iOS that includes over 3,000 bird species, reduces barriers to citizen science while generating tens of millions of bird observations globally that can be used to replicate known patterns in avian ecology.
, Eleonora Bartoli
New findings in PLOS Biology show that visual gamma oscillations are greatly attenuated by small spatial discontinuities in visual stimuli, suggesting that their genesis occurs in response to predictable regularities in the visual world.
, Jonathan M. Palmer, Cassandra L. Ettinger, Jason E. Stajich, Terence M. Farrell, Brad M. Glorioso, Becki Lawson, Steven J. Price, Anne G. Stengle, Daniel A. Grear, et al.
Snake fungal disease (SFD; ophidiomycosis), caused by the pathogen Ophidiomyces ophiodiicola (Oo), has been documented in wild snakes in North America and Eurasia, and is considered an emerging disease in the eastern United States of America. However, a lack of historical disease data has made it challenging to determine whether Oo is a recent arrival to the USA or whether SFD emergence is due to other factors. Here, we examined the genomes of 82 Oo strains to determine the pathogen’s history in the eastern USA. Oo strains from the USA formed a clade (Clade II) distinct from European strains (Clade I), and molecular dating indicated that these clades diverged too recently (approximately 2,000 years ago) for transcontinental dispersal of Oo to have occurred via natural snake movements across Beringia. A lack of nonrecombinant intermediates between clonal lineages in Clade II indicates that Oo has actually been introduced multiple times to North America from an unsampled source population, and molecular dating indicates that several of these introductions occurred within the last few hundred years. Molecular dating also indicated that the most common Clade II clonal lineages have expanded recently in the USA, with time of most recent common ancestor mean estimates ranging from 1985 to 2007 CE. The presence of Clade II in captive snakes worldwide demonstrates a potential mechanism of introduction and highlights that additional incursions are likely unless action is taken to reduce the risk of pathogen translocation and spillover into wild snake populations.
, Paige B. Miller, John M. Drake
Historically, emerging and reemerging infectious diseases have caused large, deadly, and expensive multinational outbreaks. Often outbreak investigations aim to identify who infected whom by reconstructing the outbreak transmission tree, which visualizes transmission between individuals as a network with nodes representing individuals and branches representing transmission from person to person. We compiled a database, called OutbreakTrees, of 382 published, standardized transmission trees consisting of 16 directly transmitted diseases ranging in size from 2 to 286 cases. For each tree and disease, we calculated several key statistics, such as tree size, average number of secondary infections, the dispersion parameter, and the proportion of cases considered superspreaders, and examined how these statistics varied over the course of each outbreak and under different assumptions about the completeness of outbreak investigations. We demonstrated the potential utility of the database through 2 short analyses addressing questions about superspreader epidemiology for a variety of diseases, including Coronavirus Disease 2019 (COVID-19). First, we found that our transmission trees were consistent with theory predicting that intermediate dispersion parameters give rise to the highest proportion of cases causing superspreading events. Additionally, we investigated patterns in how superspreaders are infected. Across trees with more than 1 superspreader, we found preliminary support for the theory that superspreaders generate other superspreaders. In sum, our findings put the role of superspreading in COVID-19 transmission in perspective with that of other diseases and suggest an approach to further research regarding the generation of superspreaders. These data have been made openly available to encourage reuse and further scientific inquiry.
Lina Zhao, Lorenz Fenk, Lars Nilsson, Niko Paresh Amin-Wetzel, Nelson Javier Ramirez-Suarez, ,
The ability to detect and respond to acute oxygen (O2) shortages is indispensable to aerobic life. The molecular mechanisms and circuits underlying this capacity are poorly understood. Here, we characterize the behavioral responses of feeding Caenorhabditis elegans to approximately 1% O2. Acute hypoxia triggers a bout of turning maneuvers followed by a persistent switch to rapid forward movement as animals seek to avoid and escape hypoxia. While the behavioral responses to 1% O2 closely resemble those evoked by 21% O2, they have distinct molecular and circuit underpinnings. Disrupting phosphodiesterases (PDEs), specific G proteins, or BBSome function inhibits escape from 1% O2 due to increased cGMP signaling. A primary source of cGMP is GCY-28, the ortholog of the atrial natriuretic peptide (ANP) receptor. cGMP activates the protein kinase G EGL-4 and enhances neuroendocrine secretion to inhibit acute responses to 1% O2. Triggering a rise in cGMP optogenetically in multiple neurons, including AIA interneurons, rapidly and reversibly inhibits escape from 1% O2. Ca2+ imaging reveals that a 7% to 1% O2 stimulus evokes a Ca2+ decrease in several neurons. Defects in mitochondrial complex I (MCI) and mitochondrial complex I (MCIII), which lead to persistently high reactive oxygen species (ROS), abrogate acute hypoxia responses. In particular, repressing the expression of isp-1, which encodes the iron sulfur protein of MCIII, inhibits escape from 1% O2 without affecting responses to 21% O2. Both genetic and pharmacological up-regulation of mitochondrial ROS increase cGMP levels, which contribute to the reduced hypoxia responses. Our results implicate ROS and precise regulation of intracellular cGMP in the modulation of acute responses to hypoxia by C. elegans.
Tiffany M. Zarrella,
Bacteria typically exist in dynamic, multispecies communities where polymicrobial interactions influence fitness. Elucidating the molecular mechanisms underlying these interactions is critical for understanding and modulating bacterial behavior in natural environments. While bacterial responses to foreign species are frequently characterized at the molecular and phenotypic level, the exogenous molecules that elicit these responses are understudied. Here, we outline a systematic strategy based on transcriptomics combined with genetic and biochemical screens of promoter–reporters to identify the molecules from one species that are sensed by another. We utilized this method to study interactions between the pathogens Pseudomonas aeruginosa and Staphylococcus aureus that are frequently found in coinfections. We discovered that P. aeruginosa senses diverse staphylococcal exoproducts including the metallophore staphylopine (StP), intermediate metabolites citrate and acetoin, and multiple molecules that modulate its iron starvation response. We observed that StP inhibits biofilm formation and that P. aeruginosa can utilize citrate and acetoin for growth, revealing that these interactions have both antagonistic and beneficial effects. Due to the unbiased nature of our approach, we also identified on a genome scale the genes in S. aureus that affect production of each sensed exoproduct, providing possible targets to modify multispecies community dynamics. Further, a combination of these identified S. aureus products recapitulated a majority of the transcriptional response of P. aeruginosa to S. aureus supernatant, validating our screening strategy. Cystic fibrosis (CF) clinical isolates of both S. aureus and P. aeruginosa also showed varying degrees of induction or responses, respectively, which suggests that these interactions are widespread among pathogenic strains. Our screening approach thus identified multiple S. aureus secreted molecules that are sensed by P. aeruginosa and affect its physiology, demonstrating the efficacy of this approach, and yielding new insight into the molecular basis of interactions between these 2 species.
Siebren Faber,
Being able to see the beauty of this world is a wonderful thing unfortunately unavailable to people with inherited blindness. In this issue of PLOS Biology, Mercey and colleagues present optimized expansion microscopy for retinal tissue, which represents a huge step forward in our ability to study these blinding conditions.
Olivier Mercey, Corinne Kostic, Eloïse Bertiaux, Alexia Giroud, Yashar Sadian, David C. A. Gaboriau, Ciaran G. Morrison, Ning Chang, Yvan Arsenijevic, , et al.
Inherited retinal degeneration due to loss of photoreceptor cells is a leading cause of human blindness. These cells possess a photosensitive outer segment linked to the cell body through the connecting cilium (CC). While structural defects of the CC have been associated with retinal degeneration, its nanoscale molecular composition, assembly, and function are barely known. Here, using expansion microscopy and electron microscopy, we reveal the molecular architecture of the CC and demonstrate that microtubules are linked together by a CC inner scaffold containing POC5, CENTRIN, and FAM161A. Dissecting CC inner scaffold assembly during photoreceptor development in mouse revealed that it acts as a structural zipper, progressively bridging microtubule doublets and straightening the CC. Furthermore, we show that Fam161a disruption in mouse leads to specific CC inner scaffold loss and triggers microtubule doublet spreading, prior to outer segment collapse and photoreceptor degeneration, suggesting a molecular mechanism for a subtype of retinitis pigmentosa.
, T. Mitchell Aide, Elizabeth Braker, Carissa N. Ganong, Rebecca D. Hardin, Karen D. Holl, Sara C. Hotchkiss, Jeffrey A. Klemens, Erin K. Kuprewicz, Deedra McClearn, et al.
Understanding tropical biology is important for solving complex problems such as climate change, biodiversity loss, and zoonotic pandemics, but biology curricula view research mostly via a temperate-zone lens. Integrating tropical research into biology education is urgently needed to tackle these issues.
, Poojya Ravishankar,
Gamma oscillations (30 to 80 Hz) have been hypothesized to play an important role in feature binding, based on the observation that continuous long bars induce stronger gamma in the visual cortex than bars with a small gap. Recently, many studies have shown that natural images, which have discontinuities in several low-level features, do not induce strong gamma oscillations, questioning their role in feature binding. However, the effect of different discontinuities on gamma has not been well studied. To address this, we recorded spikes and local field potential from 2 monkeys while they were shown gratings with discontinuities in 4 attributes: space, orientation, phase, or contrast. We found that while these discontinuities only had a modest effect on spiking activity, gamma power drastically reduced in all cases, suggesting that gamma could be a resonant phenomenon. An excitatory–inhibitory population model with stimulus-tuned recurrent inputs showed such resonant properties. Therefore, gamma could be a signature of excitation–inhibition balance, which gets disrupted due to discontinuities.
Back to Top Top