Science of The Total Environment

Journal Information
ISSN / EISSN : 0048-9697 / 1879-1026
Published by: Elsevier BV (10.1016)
Total articles ≅ 51,690
Current Coverage
SCOPUS
SCIE
GEOBASE
COMPENDEX
MEDICUS
MEDLINE
PUBMED
Archived in
EBSCO
SHERPA/ROMEO
Filter:

Latest articles in this journal

Published: 24 September 2021
Science of The Total Environment; https://doi.org/10.1016/j.scitotenv.2021.150551

Abstract:
Exposure to urban greenspaces promotes a variety of mental health benefits. However, much of the evidence for these benefits is biased towards high-income countries. In contrast, urban areas in low-income settings that have the highest rates of urbanisation remain understudied. Given the increasing burden of mental ill-health associated with urbanisation in low- and middle-income countries (LMICs), there is a clear need to better understand the role urban greenspaces play in mitigating mental ill-health. Here we use a novel combination of research methods (participatory video, focus groups and the Q-methodology) in a rapidly urbanising low-income city (Kathmandu, Nepal). We explored residents' perspectives on ecosystem services, and the pathways linking greenspaces to mental health. Residents indicated that greenspaces are linked to mental health through pathways such as reducing harm (exposure to air pollution and heat), restoring capacities (attention restoration and stress reduction), building capacities (encouraging physical activity, fostering social cohesion and child development) and causing harm (human – wildlife conflicts, gender discrimination). It is likely that a combination of such pathways triggers mental health impacts. Of all ecosystem services, cultural services such as providing settings for recreation, or intellectual or mental interactions with greenspaces involving analytical, symbolic, spiritual or religious activities were most preferred. Our findings emphasise that cultural ecosystem services provide are a fundamental basic need which all people, including low-income residents, depend on to participate meaningfully in society. Urban greenspaces therefore play a pivotal role in reducing the burden of mental ill-health for low-income residents in LMICs. Greater efforts to increase the quantity, quality and accessibility of greenspaces may help to address current health inequalities in LMICs.
Published: 24 September 2021
Science of The Total Environment; https://doi.org/10.1016/j.scitotenv.2021.150492

Abstract:
Most perennial crops sensitive to water scarcity, such as citrus, can benefit from efficient water management, which allows for reduced water consumption while increasing crop production on a long-term basis. However, when implementing water-saving strategies, it is necessary to monitor soil and/or plant water status in order to determine crop water demand. A plethora of devices providing indirect measurements of volumetric soil water content, such as the “drill and drop” multi-sensors probes (Sentek, Inc., Stepney, Australia), have been developed over the last decade.
Yongpeng Wei, Xia Liu, Zhenyu Wang, Yuantong Chi, Tongtao Yue, Yanhui Dai, ,
Published: 24 September 2021
Science of The Total Environment; https://doi.org/10.1016/j.scitotenv.2021.150520

Abstract:
Parabens pose increasing threats to human health due to endocrine disruption activity. Adsorption and degradation of parabens by three types of graphene-family nanomaterials (GFNs) were therefore investigated. For a given paraben, the maximum adsorption capacities (Q0) followed the order of reduced graphene oxide (RGO) > multilayered graphene (MG) > graphene oxide (GO); for a given GFN, Q0 followed the order of butylparaben (BuP) > propylparaben (PrP) > ethylparaben (EtP) > methylparaben (MeP), dominated by hydrophobic interaction. MeP removal by all the three GFNs was highly enhanced (0.55–4.37 times) with the assistance of H2O2 due to additional catalytic degradation process, and MG showed the highest removal enhancement. ∙OH was confirmed as the dominant radicals responsible for parabens degradation. For MG and RGO, the metal impurities (Fe, Cu, Mn, and Co) initiated Fenton-like reaction with H2O2 to generate ∙OH. GO contained oxygen-centered free radicals, which were responsible for ∙OH formation via transferring electron to H2O2. Four degradation byproducts of MeP were identified, including oxalic, propanedioic, fumaric, and 2,5-dihydroxybenzoic acids. Combined with density function theory calculations, the degradation sites and pathways were identified and confirmed. These findings provide useful information on mechanistic understanding towards the adsorption and degradation of parabens by GFNs.
Shiyu Chen, Marcel Holyoak, Hui Liu, Heng Bao, Yingjie Ma, Hongliang Dou,
Published: 24 September 2021
Science of The Total Environment; https://doi.org/10.1016/j.scitotenv.2021.150537

Abstract:
Effects of climate warming on trophic cascades are increasingly reported for large herbivores occupying northern latitudes. During the last 40 years, moose (Alces alces) in northeast China have lost nearly half of their historical distribution through their habitat shifting northwards. There are many possible causes of bottom-up and top-down effects of temperature and for moose in northeast China they are poorly understood. Of particular relevance are the effects of extrinsic environmental factors on gene flow, nutritional adaptions, and gut microbiota that occur as moose populations retreat northwards. We combined molecular biology, nutritional ecology and metagenomics to gain deeper mechanistic insights into the effects of temperature on moose populations. In this study, we revealed that the direction and intensity of gene flow is consistent with global warming driving retreats of moose populations. We interpret this as evidence for the northward movement of moose populations, with cooler northern populations receiving more immigrants and warmer southern populations supplying emigrants. Comparison across latitudes showed that warmer late spring temperatures were associated with plant community composition and facilitated related changes in moose protein and carbohydrate intake through altering forage availability, forage quality and diet composition. Furthermore, these nutrient shifts were accompanied by changes in gut microbial composition and functional pathways related to nutrient metabolism. This study provided insights into mechanisms driving effects of spatial heterogeneous warming on genetic, nutritional and physiological adaptions related to key demographic rates and patterns of survival of heat-sensitive ungulates along a latitude gradient. Understanding such changes helps to identify key habitat areas and plant species to ensure accurate assessment of population status and targeted management of moose populations.
Roser Esplugas, , Montse Mari, Julio Fernández-Arribas, Ethel Eljarrat, José L. Domingo, Marta Schuhmacher
Published: 24 September 2021
Science of The Total Environment; https://doi.org/10.1016/j.scitotenv.2021.150494

Abstract:
Flame retardants (FRs) are widely used in consumer products including furniture foam and electronic equipment such as computers, monitors and TVs. Over time, FRs can easily migrate into the surrounding environments. Since brominated FRs (BFRs) has been determined of high concern due to their environmental persistence, bioaccumulation and potential toxicity, novel FRs have emerged. The present study was aimed at identifying and quantifying the indoor levels of 41 legacy and novel FRs, which include 20 OPFRs and 21 HFRs (8 PBDEs, 3 HBCDDs, 5 NBFRs and 5 DECs) in Tarragona Province (Catalonia, Spain). The results have confirmed the presence of both legacy and novel FRs in air and dust of homes, schools and offices. To the best of our knowledge, this is the first European study measuring OPFRs at office environments and also confirming the presence of the following OPFRs: TEP, TCIPP, T2IPPP, TPPO, DCP, TMCP and B4IPPPP in indoor air, even some of them at high levels. OPFRs in general and TCIPP in particular showed high concentrations in air (94,599 pg/m3 and 72,281 pg/m3, respectively) and dust (32,084 ng/g and 13,496 ng/g, respectively) samples collected in indoor environments. HBCDDs were found at high levels in dust (32,185 ng/g), whereas the presence of PBDEs and DECs were low in both matrices (<160 pg/m3 in air and <832 ng/g in dust). NBFRs showed higher levels than the two legacy FRs groups, which is supported by the current restrictions of these FRs (640 pg/m3 in air and 1291 ng/g in dust). Samples of schools had significantly lower levels of NBFRs, but significantly higher concentrations of HFRs in air than in home samples, while dust levels of HFRs were significantly lower than those in samples of offices. Regarding human health risks, the current assessment suggests that those derived from exposure to FRs were lower -although close- to assumable risks, evidencing the potential of FRs for non-carcinogenic and carcinogenic risks, mainly due to the exposure to TCIPP, which was the main contributor together with ΣHBCDDs and also EHDPP.
Tong Li, Yajing Sun, Ying Zeng, Edmond Sanganyado, ,
Published: 24 September 2021
Science of The Total Environment; https://doi.org/10.1016/j.scitotenv.2021.150561

Abstract:
Hydroxylated polybrominated diphenyl ethers (OH-BDEs) are major transformation products of PBDEs that readily bioaccumulate in the marine food web. Although 6-OH-BDE-47 is frequently and abundantly detected in cetaceans, its potential toxic effects are largely unknown. We explored the toxicological pathways and mechanisms of OH-BDEs by exposing pygmy killer whale skin fibroblast cell lines (PKW-LWHT) to 6-OH-BDE-47 at concentrations ranging from 0.02, 0.2, 2 to 4 μM. The result showed that 6-OH-BDE-47 inhibited cell proliferation in a concentration- and time-dependent manner. The cell cycle data revealed that the cell cycle was arrest at the G0/G1 phase by 6-OH-BDE-47. Using qPCR and Western blot assay, we found that 6-OH-BDE-47 up-regulated the transcription and expression level of p21 and RB1 and down-regulated the expression level of Proliferating Cell Nuclear Antigen (PCNA), CDK2, CDK4, cyclin D1, cyclin E2, E2F1, and E2F3 and the cellular phosphorylated RB1. The results showed that 6-OH-BDE-47 was able to arrest the cell cycle of PKW-LWHT cells at G1 phase by changing the expression level of related regulatory genes in G1 stage, and finally inhibit cell proliferation.
Kitudom Nawatbhrist, Fauset Sophie, Zhou Yingying, Fan Zexin, Li Murong, He Mingjian, Zhang Shubin, Xu Kun,
Published: 24 September 2021
Science of The Total Environment; https://doi.org/10.1016/j.scitotenv.2021.150416

Abstract:
Climate change has great impacts on forest ecosystems, especially with the increasing frequency of heatwaves. Thermal safety margin (TSM) calculated by the difference between body temperature and thermotolerance threshold is useful to predict thermal safety of organisms. It has been widely used for animals, whereas has rarely been reported for plants. Besides, most of the previous studies used only thermotolerance to estimate thermal safety or used thermotolerance and air temperature (Ta) to calculate TSM. However, leaf temperature (Tl) is the real “body” temperature of plant leaves. Tl decoupling from Ta might induce large error in TSM. Here, we investigated TSM of photosystem II (thermotolerance of PSII – the maximum Tl) of dominant canopy plants in four forests from tropical to temperate biomes during a heatwave, and compared the TSMs calculated by Tl (TSM.Tl) and Ta (TSM.Ta) respectively. Also, thermal related leaf traits were investigated. The results showed that both TSM. Tl and TSM.Ta decreased from the cool forests to the hot forests. TSM.Tl was highly correlated with the maximum leaf temperature (Tlmax), while had an opposite trend with thermotolerance across biomes. Thus, Tlmax instead of thermotolerance can be used to evaluate TSM. The maximum Ta (Tamax), Tlmax and leaf traits explained 68% of the variance of thermotolerance in a random forest model, where Tamax and Tlmax explained 62%. TSM.Ta could not distinguish thermal safety differences between co-occurring species. The overestimation of TSM by TSM.Ta increased from the tropical to the temperate forest, and increased with Tl within biome. Therefore, it is not recommended to use TSM.Ta in cold forests. The present study enriches the dataset of photosynthetic TSMs across biomes, proposes using Tlmax to estimate TSMs of leaves, and highlights the risk of hot dry forest during heatwaves.
Published: 24 September 2021
Science of The Total Environment; https://doi.org/10.1016/j.scitotenv.2021.150521

Abstract:
We live in a global pandemic caused by the COVID-19 disease where severe social distancing measures are necessary. Some of these measures have been taken into account by the administrative boundaries within cities (neighborhoods, postal districts, etc.). However, considering only administrative boundaries in decision making can prove imprecise, and could have consequences when it comes to taking effective measures. To solve the described problems, we present an epidemiological study that proposes using spatial point patterns to delimit spatial units of analysis based on the highest local incidence of hospitalisations instead of administrative limits during the first COVID-19 wave.
He Zhang, Ming Xin, Baodong Wang, Jing Wang, , Xiang Gu, Wei Ouyang, Xitao Liu, Mengchang He
Published: 24 September 2021
Science of The Total Environment, Volume 806; https://doi.org/10.1016/j.scitotenv.2021.150540

Abstract:
Phosphorus contamination in urbanized bays has been a major concern because the bay restoration is often hindered by complex P sources and behaviors. This study examined the spatiotemporal changes of P species and exchange potential in/between the water and sediment of the Jiaozhou Bay. The results indicated that dissolved P (TDP) and inorganic P (DIP) in the water ranged from 7.8–128.7 and 1.8–14.1 μg/L, respectively; while total P (TP) in the sediment ranged from 213.4–638.7 mg/kg. The TDP and DIP concentrations in the water were high in winter and low in summer, and generally decreased from northeastern or northern areas to southwestern or southern areas mainly due to phytoplankton bloom cycles and riverine and wastewater inputs. TP in the sediment was lower in the northwestern area due to solid dilution effect by the settlement of settled coarser suspended particles. Changes in aquatic geochemical conditions from rivers to bay caused P accumulation in estuarine sediment, with higher P partition in organic fraction (40%). Compared to the estuarine sediment, higher fractions of P were associated with carbonate (34%) and iron oxide (17%) minerals in the bay sediment. Equilibrium P concentrations at zero sorption (EPC0) were 4.1–149.8 μg/L, which was substantially higher than the DIP concentration, demonstrating P release potential from the sediment. In addition, the P release potential was high in the northeastern area while P partition coefficient or buffer intensity (Kd) was high in the northwestern area. EPC0 was significantly positively correlated with soluble and exchangeable P in the sediment while Kd was significantly negatively correlated. These results can provide improved insights into P behaviors in an urbanized bay, particularly the P release potential and spatiotemporal change.
Published: 24 September 2021
Science of The Total Environment; https://doi.org/10.1016/j.scitotenv.2021.150515

Abstract:
Numerous studies have estimated adverse effects of short-term exposure to ambient air pollution on public health. Few have focused on sex-differences, and results have been inconsistent. The purpose of this study was three-fold: to identify sex-differences in air pollution-related health outcomes; to examine sex-differences by cause and season; and to examine time trends in sex-differences.
Back to Top Top