Annual Review of Neuroscience

Journal Information
ISSN / EISSN : 0147-006X / 1545-4126
Published by: Annual Reviews (10.1146)
Total articles ≅ 1,204
Current Coverage
Archived in

Latest articles in this journal

Gabriel E. Vázquez-Vélez, Huda Y. Zoghbi
Annual Review of Neuroscience, Volume 44, pp 87-108; doi:10.1146/annurev-neuro-100720-034518

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by degeneration of the substantia nigra pars compacta and by accumulation of α-synuclein in Lewy bodies. PD is caused by a combination of environmental factors and genetic variants. These variants range from highly penetrant Mendelian alleles to alleles that only modestly increase disease risk. Here, we review what is known about the genetics of PD. We also describe how PD genetics have solidified the role of endosomal, lysosomal, and mitochondrial dysfunction in PD pathophysiology. Finally, we highlight how all three pathways are affected by α-synuclein and how this knowledge may be harnessed for the development of disease-modifying therapeutics.
Ruhma Syeda
Annual Review of Neuroscience, Volume 44, pp 383-402; doi:10.1146/annurev-neuro-093020-120939

Nearly all structures in our body experience mechanical forces. At a molecular scale, these forces are detected by ion channels that function as mechanotransducers converting physical forces into electrochemical responses. Here we focus on PIEZOs, a family of mechanically activated ion channels comprising PIEZO1 and PIEZO2. The significance of these channels is highlighted by their roles in touch and pain sensation as well as in cardiovascular and respiratory physiology, among others. Moreover, mutations in PIEZOs cause somatosensory, proprioceptive, and blood disorders. The goal here is to present the diverse physiology and pathophysiology of these unique channels, discuss ongoing research and critical gaps in the field, and explore the pharmaceutical interest in targeting PIEZOs for therapeutic development.
Jeffrey S. Mogil
Annual Review of Neuroscience, Volume 44, pp 1-25; doi:10.1146/annurev-neuro-092820-105941

Pain is an immense clinical and societal challenge, and the key to understanding and treating it is variability. Robust interindividual differences are consistently observed in pain sensitivity, susceptibility to developing painful disorders, and response to analgesic manipulations. This review examines the causes of this variability, including both organismic and environmental sources. Chronic pain development is a textbook example of a gene-environment interaction, requiring both chance initiating events (e.g., trauma, infection) and more immutable risk factors. The focus is on genetic factors, since twin studies have determined that a plurality of the variance likely derives from inherited genetic variants, but sex, age, ethnicity, personality variables, and environmental factors are also considered.
Ian M. Traniello, Gene E. Robinson
Annual Review of Neuroscience, Volume 44, pp 109-128; doi:10.1146/annurev-neuro-092820-012959

Animals operate in complex environments, and salient social information is encoded in the nervous system and then processed to initiate adaptive behavior. This encoding involves biological embedding, the process by which social experience affects the brain to influence future behavior. Biological embedding is an important conceptual framework for understanding social decision-making in the brain, as it encompasses multiple levels of organization that regulate how information is encoded and used to modify behavior. The framework we emphasize here is that social stimuli provoke short-term changes in neural activity that lead to changes in gene expression on longer timescales. This process, simplified—neurons are for today and genes are for tomorrow—enables the assessment of the valence of a social interaction, an appropriate and rapid response, and subsequent modification of neural circuitry to change future behavioral inclinations in anticipation of environmental changes. We review recent research on the neural and molecular basis of biological embedding in the context of social interactions, with a special focus on the honeybee.
Catherine J. Stoodley, Peter T. Tsai
Annual Review of Neuroscience, Volume 44, pp 475-493; doi:10.1146/annurev-neuro-100120-092143

Social interactions involve processes ranging from face recognition to understanding others’ intentions. To guide appropriate behavior in a given context, social interactions rely on accurately predicting the outcomes of one's actions and the thoughts of others. Because social interactions are inherently dynamic, these predictions must be continuously adapted. The neural correlates of social processing have largely focused on emotion, mentalizing, and reward networks, without integration of systems involved in prediction. The cerebellum forms predictive models to calibrate movements and adapt them to changing situations, and cerebellar predictive modeling is thought to extend to nonmotor behaviors. Primary cerebellar dysfunction can produce social deficits, and atypical cerebellar structure and function are reported in autism, which is characterized by social communication challenges and atypical predictive processing. We examine the evidence that cerebellar-mediated predictions and adaptation play important roles in social processes and argue that disruptions in these processes contribute to autism.
Redmond G. O'Connell,
Annual Review of Neuroscience, Volume 44; doi:10.1146/annurev-neuro-092019-100200

The discovery of neural signals that reflect the dynamics of perceptual decision formation has had a considerable impact. Not only do such signals enable detailed investigations of the neural implementation of the decision-making process but they also can expose key elements of the brain's decision algorithms. For a long time, such signals were only accessible through direct animal brain recordings, and progress in human neuroscience was hampered by the limitations of noninvasive recording techniques. However, recent methodological advances are increasingly enabling the study of human brain signals that finely trace the dynamics of the unfolding decision process. In this review, we highlight how human neurophysiological data are now being leveraged to furnish new insights into the multiple processing levels involved in forming decisions, to inform the construction and evaluation of mathematical models that can explain intra- and interindividual differences, and to examine how key ancillary processes interact with core decision circuits. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see for revised estimates.
Published: 29 April 2021
Annual Review of Neuroscience, Volume 44; doi:10.1146/annurev-neuro-102320-085825

The mouse, as a model organism to study the brain, gives us unprecedented experimental access to the mammalian cerebral cortex. By determining the cortex's cellular composition, revealing the interaction between its different components, and systematically perturbing these components, we are obtaining mechanistic insight into some of the most basic properties of cortical function. In this review, we describe recent advances in our understanding of how circuits of cortical neurons implement computations, as revealed by the study of mouse primary visual cortex. Further, we discuss how studying the mouse has broadened our understanding of the range of computations performed by visual cortex. Finally, we address how future approaches will fulfill the promise of the mouse in elucidating fundamental operations of cortex. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see for revised estimates.
Published: 29 April 2021
Annual Review of Neuroscience, Volume 44; doi:10.1146/annurev-neuro-100520-082639

Maps of the nervous system inspire experiments and theories in neuroscience. Advances in molecular biology over the past decades have revolutionized the definition of cell and tissue identity. Spatial transcriptomics has opened up a new era in neuroanatomy, where the unsupervised and unbiased exploration of the molecular signatures of tissue organization will give rise to a new generation of brain maps. We propose that the molecular classification of brain regions on the basis of their gene expression profile can circumvent subjective neuroanatomical definitions and produce common reference frameworks that can incorporate cell types, connectivity, activity, and other modalities. Here we review the technological and conceptual advances made possible by spatial transcriptomics in the context of advancing neuroanatomy and discuss how molecular neuroanatomy can redefine mapping of the nervous system. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see for revised estimates.
Published: 21 April 2021
Annual Review of Neuroscience, Volume 44; doi:10.1146/annurev-neuro-100120-085519

Adaptive behavior in a complex, dynamic, and multisensory world poses some of the most fundamental computational challenges for the brain, notably inference, decision-making, learning, binding, and attention. We first discuss how the brain integrates sensory signals from the same source to support perceptual inference and decision-making by weighting them according to their momentary sensory uncertainties. We then show how observers solve the binding or causal inference problem—deciding whether signals come from common causes and should hence be integrated or else be treated independently. Next, we describe the multifarious interplay between multisensory processing and attention. We argue that attentional mechanisms are crucial to compute approximate solutions to the binding problem in naturalistic environments when complex time-varying signals arise from myriad causes. Finally, we review how the brain dynamically adapts multisensory processing to a changing world across multiple timescales. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see for revised estimates.
, Richard P. Dum, Jean-Alban Rathelot
Published: 16 April 2021
Annual Review of Neuroscience, Volume 44; doi:10.1146/annurev-neuro-070918-050216

What changes in neural architecture account for the emergence and expansion of dexterity in primates? Dexterity, or skill in performing motor tasks, depends on the ability to generate highly fractionated patterns of muscle activity. It also involves the spatiotemporal coordination of activity in proximal and distal muscles across multiple joints. Many motor skills require the generation of complex movement sequences that are only acquired and refined through extensive practice. Improvements in dexterity have enabled primates to manufacture and use tools and humans to engage in skilled motor behaviors such as typing, dance, musical performance, and sports. Our analysis leads to the following synthesis: The neural substrate that endows primates with their enhanced motor capabilities is due, in part, to ( a) major organizational changes in the primary motor cortex and ( b) the proliferation of output pathways from other areas of the cerebral cortex, especially from the motor areas on the medial wall of the hemisphere. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see for revised estimates.
Back to Top Top