Metabolites

Journal Information
ISSN / EISSN : 2218-1989 / 2218-1989
Published by: MDPI AG (10.3390)
Total articles ≅ 1,700
Current Coverage
SCOPUS
SCIE
PUBMED
PMC
DOAJ
Archived in
SHERPA/ROMEO
Filter:

Latest articles in this journal

Published: 30 July 2021
by MDPI
Metabolites, Volume 11; doi:10.3390/metabo11080501

Abstract:
Photorespiration is a metabolic process that removes toxic 2-phosphoglycolate produced by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. It is essential for plant growth under ambient air, and it can play an important role under stress conditions that reduce CO2 entry into the leaf thus enhancing photorespiration. The aim of the study was to determine the impact of photorespiration on Arabidopsis thaliana leaf amino acid metabolism under low atmospheric CO2 concentrations. To achieve this, wild-type plants and photorespiratory glycolate oxidase (gox) mutants were given either short-term (4 h) or long-term (1 to 8 d) low atmospheric CO2 concentration treatments and leaf amino acid levels were measured and analyzed. Low CO2 treatments rapidly decreased net CO2 assimilation rate and triggered a broad reconfiguration of soluble amino acids. The most significant changes involved photorespiratory Gly and Ser, aromatic and branched-chain amino acids as well as Ala, Asp, Asn, Arg, GABA and homoSer. While the Gly/Ser ratio increased in all Arabidopsis lines between air and low CO2 conditions, low CO2 conditions led to a higher increase in both Gly and Ser contents in gox1 and gox2.2 mutants when compared to wild-type and gox2.1 plants. Results are discussed with respect to potential limiting enzymatic steps with a special emphasis on photorespiratory aminotransferase activities and the complexity of photorespiration.
Published: 30 July 2021
by MDPI
Metabolites, Volume 11; doi:10.3390/metabo11080502

Abstract:
The liver is a vital organ that sustains multiple functions beneficial for the whole organism. It is sexually dimorphic, presenting sex-biased gene expression with implications for the phenotypic differences between males and females. Estrogens are involved in this sex dimorphism and their actions in the liver of several reptiles, fishes, amphibians, and birds are discussed. The liver participates in reproduction by producing vitellogenins (yolk proteins) and eggshell proteins under the control of estrogens that act via two types of receptors active either mainly in the cell nucleus (ESR) or the cell membrane (GPER1). Estrogens also control hepatic lipid and lipoprotein metabolisms, with a triglyceride carrier role for VLDL from the liver to the ovaries during oogenesis. Moreover, the activation of the vitellogenin genes is used as a robust biomarker for exposure to xenoestrogens. In the context of liver diseases, high plasma estrogen levels are observed in fatty liver hemorrhagic syndrome (FLHS) in chicken implicating estrogens in the disease progression. Fishes are also used to investigate liver diseases, including models generated by mutation and transgenesis. In conclusion, studies on the roles of estrogens in the non-mammalian oviparous vertebrate liver have contributed enormously to unveil hormone-dependent physiological and physiopathological processes.
Published: 30 July 2021
by MDPI
Metabolites, Volume 11; doi:10.3390/metabo11080500

Abstract:
The human metabolome may vary based on age, over time, and in the presence of viral carriage and bacterial colonization—a common scenario in children. We used nuclear magnetic resonance spectroscopy to identify and quantify urinary metabolites of children without signs or symptoms of respiratory illness. A urine sample and two nasopharyngeal swabs were collected to test for respiratory viral pathogens and colonization by Streptococcus pneumoniae (Sp). Urine samples were collected at the initial visit, 24 h post-enrollment, and 10–14 days post-enrollment. Of the 122 children enrolled, 24% had a virus detected and 19.7% had Sp detected. Intraclass correlation coefficients demonstrated greater within-subject versus between-subject variability for all metabolites detected. In linear mixed models adjusted for age, time, history of asthma, Sp, and viruses, 1-methylnicotinamide was increased by 50% in children with Sp and decreased by 35% in children with rhinovirus/enterovirus. Children with Sp had 83% higher levels of trimethylamine-N-oxide compared with those without Sp. However, when adjusting for multiple comparisons, the association was no longer statistically significant. In conclusion, there appear to be short-term changes within the urinary metabolome of healthy children, but levels of metabolites did not statistically differ in children with viral carriage or Sp detected.
Published: 30 July 2021
by MDPI
Metabolites, Volume 11; doi:10.3390/metabo11080497

Abstract:
The heart is characterized by the prominent flexibility of its energy metabolism and is able to use diverse carbon substrates, including carbohydrates and amino acids. Cardiac substrate preference could have a major impact on the progress of cardiac pathologies. However, the majority of methods to investigate changes in substrates’ use in cardiac metabolism in vivo are complex and not suitable for high throughput testing necessary to understand and reverse these pathologies. Thus, this study aimed to develop a simple method that would allow for the analysis of cardiac metabolic substrate use. The developed methods involved the subcutaneous injection of stable 13C isotopomers of glucose, valine, or leucine with mass spectrometric analysis for the investigation of its entry into cardiac metabolic pathways that were deducted from 13C alanine and glutamate enrichments in heart extracts. The procedures were validated by confirming the known effects of treatments that modify glucose, free fatty acids, and amino acid metabolism. Furthermore, we studied changes in the energy metabolism of CD73 knock-out mice to demonstrate the potential of our methods in experimental research. The methods created allowed for fast estimation of cardiac glucose and amino acid use in mice and had the potential for high-throughput analysis of changes in pathology and after pharmacological treatments.
Published: 30 July 2021
by MDPI
Metabolites, Volume 11; doi:10.3390/metabo11080498

Abstract:
Recently, manipulations with reactive astrocytes have been viewed as a new therapeutic approach that will enable the development of treatments for acute brain injuries and neurodegenerative diseases. Astrocytes can release several substances, which may exert neurotoxic or neuroprotective effects, but the nature of these substances is still largely unknown. In the present work, we tested the hypothesis that these effects may be attributed to oxylipins, which are synthesized from n-3 or n-6 polyunsaturated fatty acids (PUFAs). We used astrocyte-enriched cultures and found that: (1) lipid fractions secreted by lipopolysaccharide (LPS)—stimulated rat primary astrocyte-enriched cultures—possessed neurotoxic activity in rat primary neuronal cultures; (2) both of the tested oxylipin synthesis inhibitors, ML355 and Zileuton, reduce the LPS-stimulated release of interleukin 6 (IL-6) by astrocyte cultures, but only ML355 can change lipid fractions from neurotoxic to non-toxic; and (3) oxylipin profiles, measured by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) from neurotoxic and non-toxic lipid fractions, reveal a group of n-3 docosahexaenoic acid derivatives, hydroxydocosahexaenoic acids (HdoHEs)-4-HdoHE, 8-HdoHE, and 17-HdoHE, which may reflect the neuroprotective features of lipid fractions. Regulating the composition of astrocyte oxylipin profiles may be suggested as an approach for regulation of neurotoxicity in inflammatory processes.
Published: 30 July 2021
by MDPI
Metabolites, Volume 11; doi:10.3390/metabo11080499

Abstract:
A decrease in ovarian estrogens in postmenopausal women increases the risk of weight gain, cardiovascular disease, type 2 diabetes, and chronic inflammation. While it is known that gut microbiota regulates energy homeostasis, it is unclear if gut microbiota is associated with estradiol regulation of metabolism. In this study, we tested if estradiol-mediated protection from high-fat diet (HFD)-induced obesity and metabolic changes are associated with longitudinal alterations in gut microbiota in female mice. Ovariectomized adult mice with vehicle or estradiol (E2) implants were fed chow for two weeks and HFD for four weeks. As reported previously, E2 increased energy expenditure, physical activity, insulin sensitivity, and whole-body glucose turnover. Interestingly, E2 decreased the tight junction protein occludin, suggesting E2 affects gut epithelial integrity. Moreover, E2 increased Akkermansia and decreased Erysipleotrichaceae and Streptococcaceae. Furthermore, Coprobacillus and Lactococcus were positively correlated, while Akkermansia was negatively correlated, with body weight and fat mass. These results suggest that changes in gut epithelial barrier and specific gut microbiota contribute to E2-mediated protection against diet-induced obesity and metabolic dysregulation. These findings provide support for the gut microbiota as a therapeutic target for treating estrogen-dependent metabolic disorders in women.
Published: 29 July 2021
by MDPI
Metabolites, Volume 11; doi:10.3390/metabo11080493

Abstract:
Cardiovascular disease (CVD) has been classified as one of the leading causes of morbidity and mortality worldwide. CVD risk factors include smoking, hypertension, dyslipidaemia, obesity, inflammation and diabetes. The gut microbiota can influence human health through multiple interactions and community changes are associated with the development and progression of numerous disease states, including CVD. The gut microbiota are involved in the production of several metabolites, such as short-chain fatty acids (SCFAs), bile acids and trimethylamine-N-oxide (TMAO). These products of microbial metabolism are important modulatory factors and have been associated with an increased risk of CVD. Due to its association with CVD development, the gut microbiota has emerged as a target for therapeutic approaches. In this review, we summarise the current knowledge on the role of the gut microbiome in CVD development, and associated microbial communities, functions, and metabolic profiles. We also discuss CVD therapeutic interventions that target the gut microbiota such as probiotics and faecal microbiota transplantation.
Published: 29 July 2021
by MDPI
Metabolites, Volume 11; doi:10.3390/metabo11080495

Abstract:
Venous thromboembolism (VTE) is a condition comprising deep venous thrombosis (DVT) and pulmonary embolism (PE). The prevalence of this disease is constantly increasing and it is also a chief reason for morbidity. Therefore, the primary prevention of VTE remains a highly important public health issue. At present, its diagnosis generally relies on subjective clinical examination and ultrasound imaging. D-dimer is also used as a biomarker, but it is considered to be poorly specific and only moderately sensitive. There are also no reliable methods that could accurately guide the type of treatment and potentially identify patients who may benefit from more aggressive therapies without the risk of bleeding. The application of metabolomics profiling in the area of vascular diseases may become a turning point in early diagnosis and patient management. Among the most described metabolites possibly related to VTE are carnitine species, glucose, phenylalanine, 3-hydroxybutarate, lactic acid, tryptophan and some monounsaturated and polyunsaturated fatty acids. The cell response to acute PE was suggested to involve the uncoupling between glycolysis and oxidative phosphorylation. Despite technological advancement in the identification of metabolites and their alteration in thrombosis, we still do not understand the mechanisms and pathways responsible for the occurrence of observed alterations.
Published: 29 July 2021
by MDPI
Metabolites, Volume 11; doi:10.3390/metabo11080492

Abstract:
Untargeted metabolomics experiments for characterizing complex biological samples, conducted with chromatography/mass spectrometry technology, generate large datasets containing very complex and highly variable information. Many data-processing options are available, however, both commercial and open-source solutions for data processing have limitations, such as vendor platform exclusivity and/or requiring familiarity with diverse programming languages. Data processing of untargeted metabolite data is a particular problem for laboratories that specialize in non-routine mass spectrometry analysis of diverse sample types across humans, animals, plants, fungi, and microorganisms. Here, we present MStractor, an R workflow package developed to streamline and enhance pre-processing of metabolomics mass spectrometry data and visualization. MStractor combines functions for molecular feature extraction with user-friendly dedicated GUIs for chromatographic and mass spectromerty (MS) parameter input, graphical quality-control outputs, and descriptive statistics. MStractor performance was evaluated through a detailed comparison with XCMS Online. The MStractor package is freely available on GitHub at the MetabolomicsSA repository.
Published: 29 July 2021
by MDPI
Metabolites, Volume 11; doi:10.3390/metabo11080494

Abstract:
The central nervous system is critical in metabolic regulation, and accumulating evidence points to a distributed network of brain regions involved in energy homeostasis. This is accomplished, in part, by integrating peripheral and central metabolic information and subsequently modulating neuroendocrine outputs through the paraventricular and supraoptic nucleus of the hypothalamus. However, these hypothalamic nuclei are generally protected by a blood-brain-barrier limiting their ability to directly sense circulating metabolic signals—pointing to possible involvement of upstream brain nuclei. In this regard, sensory circumventricular organs (CVOs), brain sites traditionally recognized in thirst/fluid and cardiovascular regulation, are emerging as potential sites through which circulating metabolic substances influence neuroendocrine control. The sensory CVOs, including the subfornical organ, organum vasculosum of the lamina terminalis, and area postrema, are located outside the blood-brain-barrier, possess cellular machinery to sense the metabolic interior milieu, and establish complex neural networks to hypothalamic neuroendocrine nuclei. Here, evidence for a potential role of sensory CVO-hypothalamic neuroendocrine networks in energy homeostasis is presented.
Back to Top Top