Journal Information
ISSN / EISSN : 1619-0033 / 1314-2488
Published by: Pensoft Publishers (10.3897)
Total articles ≅ 344
Current Coverage
SCOPUS
SCIE
LOCKSS
DOAJ
Archived in
EBSCO
SHERPA/ROMEO
Filter:

Latest articles in this journal

Rachel Foster, Edmund Peeler, Jamie Bojko, Paul F. Clark, David Morritt, , Paul Stebbing, Hannah J. Tidbury, Louisa E. Wood, David Bass
Published: 18 October 2021
NeoBiota, Volume 69, pp 79-102; https://doi.org/10.3897/neobiota..71358

Abstract:
Invasive Non-Native Species (INNS) can co-transport externally and internally other organisms including viruses, bacteria and other eukaryotes (including metazoan parasites), collectively referred to as the symbiome. These symbiotic organisms include pathogens, a small minority of which are subject to surveillance and regulatory control, but most of which are currently unscrutinized and/or unknown. These putatively pathogenetic symbionts can potentially pose diverse risks to other species, with implications for increased epidemiological risk to agriculture and aquaculture, wildlife/ecosystems, and human health (zoonotic diseases). The risks and impacts arising from co-transported known pathogens and other symbionts of unknown pathogenic virulence, remain largely unexplored, unlegislated, and difficult to identify and quantify. Here, we propose a workflow using PubMed and Google Scholar to systematically search existing literature to determine any known and potential pathogens of aquatic INNS. This workflow acts as a prerequisite for assessing the nature and risk posed by co-transported pathogens of INNS; of which a better understanding is necessary to inform policy and INNS risk assessments. Addressing this evidence gap will be instrumental to devise an appropriate set of statutory responsibilities with respect to these symbionts, and to underpin new and more effective legislative processes relating to the disease screening and risk assessment of INNS.
Published: 13 October 2021
NeoBiota, Volume 69, pp 51-74; https://doi.org/10.3897/neobiota.69.73734

Abstract:
We used a freshwater amphipod-microsporidian model (Ponto-Caspian hosts: Dikerogammarus villosus and D. haemobaphes, parasite: Cucumispora dikerogammari) to check whether parasites affect biological invasions by modulating behaviour and intra- and interspecific interactions between the invaders. We tested competition for shelter in conspecific and heterospecific male pairs (one or both individuals infected or non-infected). In general, amphipods of both species increased their shelter occupancy time when accompanied by infected rather than non-infected conspecifics and heterospecifics. Infected amphipods faced lower aggression from non-infected conspecifics. Moreover, D. villosus was more aggressive than D. haemobaphes and more aggressive towards conspecifics vs. heterospecifics. In summary, infection reduced the intra- and interspecific competitivity of amphipods, which became less capable of defending their shelters, despite their unchanged need for shelter occupancy. Dikerogammarus haemobaphes, commonly considered as a weaker competitor, displaced by D. villosus from co-occupied locations, was able to compete efficiently for the shelter with D. villosus when microsporidian infections appeared on the scene. This suggests that parasites may be important mediators of biological invasions, facilitating the existence of large intra- and interspecific assemblages of invasive alien amphipods.
, , , Marina Golivets, Jennifer Bufford, Franz Essl, , Zarah Pattison, Petr Pyšek
Published: 13 October 2021
NeoBiota, Volume 69, pp 75-78; https://doi.org/10.3897/neobiota.69.74121

, , Thomas Cech, Rok Damjanić, Franz Essl, Freya-Isabel Georges, Gernot Hoch, Andreja Kavčič, András Koltay, , et al.
Published: 7 October 2021
NeoBiota, Volume 69, pp 1-28; https://doi.org/10.3897/neobiota.69.71651

Abstract:
The prioritization of alien species according to the magnitude of their environmental impacts has become increasingly important for the management of invasive alien species. In this study, we applied the Environmental Impact Classification of Alien Taxa (EICAT) to classify alien taxa from three different taxonomic groups to facilitate the prioritisation of management actions for the threatened riparian forests of the Mura-Drava-Danube Biosphere Reserve, South East Europe. With local experts we collated a list of 198 alien species (115 plants, 45 insects, and 38 fungi) with populations reported in southeast European forest ecosystems and included them in the EICAT. We found impact reports for 114 species. Eleven of these species caused local extinctions of a native species, 35 led to a population decrease, 51 to a reduction in performance in at least one native species and for 17 alien species no effects on individual fitness of native species were detected. Fungi had significantly highest impact and were more likely to have information on their impacts reported. Competition and parasitism were the most important impact mechanisms of alien species. This study is, to our knowledge, the first application of EICAT to all known alien species of several taxonomic groups in a protected area. The impact rankings enabled to identify taxa that generally cause high impacts and to prioritize species for the management in protected areas according to their impact magnitudes. By following a standardized impact protocol, we identified several alien species causing high impacts that do not appear on any expert-based risk list, which are relevant for policymakers. Thus, we recommend that alien species be systematically screened to identify knowledge gaps and prioritize their management with respect to spatio-temporal trends in impact magnitudes.
, Mathias Hopfinger, Sylvia Wanzenböck, Lukas Fuxjäger, Hans Rund,
Published: 7 October 2021
NeoBiota, Volume 69, pp 29-50; https://doi.org/10.3897/neobiota.69.67708

Abstract:
The European weatherfish Misgurnus fossilis (Linnaeus, 1758) is a threatened freshwater species in large parts of Europe and might come under pressure from currently establishing exotic weatherfish species. Additional threats might arise if those species hybridize which has been questioned in previous research. Regarding the hybridization of M. fossilis × M. anguillicaudatus (Cantor, 1842), we demonstrate that despite the considerable genetic distance between parental species, the estimated long divergence time and different ploidy levels do not represent a postzygotic barrier for hybridization of the European and Oriental weatherfish. The paternal species can be easily differentiated based on external pigment patterns with hybrids showing intermediate patterns. No difference in standard metabolic rate, indicating a lack of hybrid vigour, renders predictions of potential threats to the European weatherfish from hybridization with the Oriental weatherfish difficult. Therefore, the genetic and physiological basis of invasiveness via hybridization remains elusive in Misgurnus species and requires further research. The existence of prezygotic reproductive isolation mechanisms and the fertility of F1 hybrids remains to be tested to predict the potential threats of globally invasive Oriental weatherfish species.
, Taner Yildiz, , Ozgur Canak, Emre Yemişken, Daniel Pauly
Published: 6 October 2021
NeoBiota, Volume 68, pp 145-175; https://doi.org/10.3897/neobiota.68.71767

Abstract:
Invasive species pose threats to either human health or inflict ecological and/or economic damage. The silver-cheeked toadfish (Lagocephalus sceleratus), a Lessepsian species, is one of the most harmful species in the Mediterranean Sea, because of its potent neurotoxin, impacts on marine biodiversity, and the increased costs and labor they inflict on fishers. Since the catch and consumption of this pufferfish is prohibited by almost all countries bordering the Mediterranean, they have now expanded into the entire Mediterranean and Black Sea. We performed a comprehensive study of L. sceleratus covering ecological aspects, growth, reproduction, diet and trophic level based on samples from southwestern coasts of Turkey. The estimated growth parameters were L∞ = 88.7 cm, K = 0.27 year-1, C = 0.6 and WP = 0.1. Their sex-ratio was M/F = 1:0.69. Lagocephalus sceleratus appears to be a batch spawner with discontinuous oocyte recruitment and has different spawning seasons in the Eastern Mediterranean which seem to be based on temperature cues which get shorter in duration as one moves north from the Suez. We also report their first positive ecological trait, that they are controlling some other invasive species through their diets, such as lionfish, Red Sea goatfish, rabbitfish and longspine sea urchins, in addition to controlling themselves through cannibalism, which appears to be density-dependent. They are indeed a top predator in the region with a trophic level of 4.1. We suggest that targeted fishing using improved gear-types to reduce fishing gear damages are initiated, and that finding commercial markets for pufferfish could help to naturally fund ongoing control efforts.
, António Mexia, Luisa Santos
Published: 30 September 2021
NeoBiota, Volume 68, pp 127-143; https://doi.org/10.3897/neobiota.68.62844

Abstract:
This study aimed to gather information about farmers’ knowledge, perception and management practices of the newly introduced insect pest, the fall armyworm Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in Manica province, Mozambique. A total of 200 smallholder farmers with experience in maize cultivation were surveyed using a semi-structured questionnaire. The survey was conducted between May and August 2019 in four districts: Macate, Manica, Sussundenga and Vanduzi. Most farmers were unable to morphologically identify fall armyworm (FAW) (from 93.9% in Vanduzi to 98.0% in Manica). Most farmers have experienced FAW damage in their farms (from 92% in Macate to 98.0% in Manica). Maize is mostly planted in October and November (from 44.0% in Sussundenga to 60.0% of farmers in Manica), but the highest infestation period is believed to be between November and February. With the exception of Vanduzi where 65.3% of farmers apply insecticides, most farmers in other districts do not use any method to control FAW (from 60.8% in Macate to 88.0% in Manica and Sussundenga respectively). Among those applying insecticides, from 65.0% in Manica to 75.0% in Vanduzi have confidence in the efficiency of the insecticides being used against FAW. Most farmers reported an increase in the spread of FAW. The lack of financial resources is reported as the main constraint in the fight against FAW. This study is the first of its nature in the province of Manica and provides valuable information that may support extension services and researchers when designing FAW management options for local smallholder farmers.
Jorge E. Ramírez-Albores, , , Gustavo A. Bizama, Marlín Pérez-Suárez, Ernesto I. Badano
Published: 21 September 2021
NeoBiota, Volume 68, pp 105-126; https://doi.org/10.3897/neobiota.68.68572

Abstract:
The Peruvian Peppertree (Schinus molle L.) is an evergreen tree native to semiarid environments of Peru and Bolivia in South America. This tree has been introduced and widely planted for ornamental and forestry purposes in several semiarid regions of the world because its seedlings are easily established and have a high survival rate; it also grows quickly, and it is tolerant of dry climates. We compared the global and regional niches of naturalized and planted populations of S. molle in order to examine the invasive stages and potential distribution of this species in four regions of the world. This work provides a novel approach for understanding the invasion dynamics of S. molle in these areas and elucidates the ecological processes that bring about such invasions. Most naturalized and planted populations were found to be in equilibrium with the environment. In its native range as well as in Australia and South Africa the models of the coverage area of habitat suitability for natural populations were the highest, whereas the coverage area of planted populations was lower. For planted populations in Australia and South Africa, a large percentage of predicted presences fell within sink populations. The invasion stages of S. molle vary across regions in its adventive range; this result may be attributable to residence time as well as climatic and anthropic factors that have contributed to the spread of populations.
Published: 17 September 2021
NeoBiota, Volume 68, pp 79-100; https://doi.org/10.3897/neobiota.68.68997

Abstract:
Species spreading beyond their native ranges are important study objects in ecology and environmental sciences and research on biological invasions is thriving. Along with an increase in the number of publications, the research field is experiencing an increase in the diversity of methods applied and questions asked. This development has facilitated an upsurge in information on invasions, but it also creates conceptual and practical challenges. To provide more transparency on which kind of research is actually done in the field, the distinction between invasion science, encompassing the full spectrum of studies on biological invasions and the sub-field of invasion biology, studying patterns and mechanisms of species invasions with a focus on biological research questions, can be useful. Although covering a smaller range of topics, invasion biology today still is the driving force in invasion science and we discuss challenges stemming from its embeddedness in the social context. Invasion biology consists of the building blocks ‘theory’, ‘case studies’ and ‘application’, where theory takes the form of conceptual frameworks, major hypotheses and statistical generalisations. Referencing recent work in philosophy of science, we argue that invasion biology, like other biological or ecological disciplines, does not rely on the development of an all-encompassing theory in order to be efficient. We suggest, however, that theory development is nonetheless necessary and propose improvements. Recent advances in data visualisation, machine learning and semantic modelling are providing opportunities for enhancing knowledge management and presentation and we suggest that invasion science should use these to transform its ways of publishing, archiving and visualising research. Along with a stronger focus on studies going beyond purely biological questions, this would facilitate the efficient prevention and management of biological invasions.
Back to Top Top