Journal Information
ISSN / EISSN : 2072-6694 / 2072-6694
Published by: MDPI (10.3390)
Total articles ≅ 12,627
Current Coverage
SCOPUS
SCIE
PUBMED
PMC
DOAJ
Archived in
EBSCO
SHERPA/ROMEO
Filter:

Latest articles in this journal

Published: 24 October 2021
by MDPI
Abstract:
Colorectal cancer is a health problem with high mortality rates and prevalence. Thus, innovative treatment approaches need to be developed. Biogenic nanoparticles are nanomaterials that can be synthesised in biological systems and, compared to chemically synthesised nanoparticles, have better bioavailability while being more cost-effective, eco-friendlier, and less toxic. In our previous studies, the probiotic strain Lactobacillus casei ATCC 393 was used to synthesise selenium nanoparticles (SeNps), which were shown to inhibit colon cancer cell growth in vitro and in vivo. Herein, we have further investigated SeNps’ pro-apoptotic activity and their ability to induce immunogenic cell death (ICD) in colon cancer cells. The SeNps’ effect on Caco-2 cells growth was examined along with their potential to induce caspase activation. Moreover, the expression of typical pro-apoptotic and ICD markers were examined in SeNps-treated HT29 and CT26 cells by flow cytometry, Western blot, ELISA and fluorescence microscopy. Elevated caspase-3 activation and surface phosphatyldoserine, that subsided upon co-incubation with a pan-caspase inhibitor, were detected in SeNps-treated cells. Furthermore, nanoparticles induced modulation of the expression of various apoptosis-related proteins. We also report the detection of biomarkers involved in ICD, namely the translocation of calreticulin and ERp57, the release of HMGB1 and ATP, and the secretion of pro-inflammatory cytokines from SeNps-treated cells. Moreover, RAW246.7 macrophages exhibited a higher rate of phagocytosis against treated CT26 when compared to control cells. Taken together, our findings indicate that treatment with SeNps might be an efficient strategy to destroy tumour cells by inducing apoptotic cell death and triggering immune responses.
Published: 24 October 2021
by MDPI
Abstract:
In 2020, approximately 10 million people died of cancer, rendering this disease the second leading cause of death worldwide. Detecting cancer in its early stages is paramount for patients’ prognosis and survival. Hence, the scientific and medical communities are engaged in improving both therapeutic strategies and diagnostic methodologies, beyond prevention. Optical vibrational spectroscopy has been shown to be an ideal diagnostic method for early cancer diagnosis and surgical margins assessment, as a complement to histopathological analysis. Being highly sensitive, non-invasive and capable of real-time molecular imaging, Raman and Fourier transform infrared (FTIR) spectroscopies give information on the biochemical profile of the tissue under analysis, detecting the metabolic differences between healthy and cancerous portions of the same sample. This constitutes tremendous progress in the field, since the cancer-prompted morphological alterations often occur after the biochemical imbalances in the oncogenic process. Therefore, the early cancer-associated metabolic changes are unnoticed by the histopathologist. Additionally, Raman and FTIR spectroscopies significantly reduce the subjectivity linked to cancer diagnosis. This review focuses on breast and head and neck cancers, their clinical needs and the progress made to date using vibrational spectroscopy as a diagnostic technique prior to surgical intervention and intraoperative margin assessment.
Published: 24 October 2021
by MDPI
Abstract:
Glioblastoma is a tumor type of unmet need despite the development of multimodal treatment strategies. The main factors contributing to the poor prognosis of glioblastoma patients are diverse genetic and epigenetic changes driving glioblastoma persistence and recurrence. Complemented are these factors by extracellular cues mediated through cell surface receptors, which further aid in fostering pro-invasion and pro-survival signaling contributing to glioblastoma therapy resistance. The underlying mechanisms conferring this therapy resistance are poorly understood. Here, we show that the cytoskeleton regulator Lamellipodin (Lpd) mediates invasiveness, proliferation and radiosensitivity of glioblastoma cells. Phosphoproteome analysis identified the epidermal growth factor receptor (EGFR) signaling axis commonly hyperactive in glioblastoma to depend on Lpd. Mechanistically, EGFR signaling together with an interaction between Lpd and the Rapamycin-insensitive companion of mammalian target of rapamycin (RICTOR) jointly regulate glioblastoma radiosensitivity. Collectively, our findings demonstrate an essential function of Lpd in the radiation response and invasiveness of glioblastoma cells. Thus, we uncover a novel Lpd-driven resistance mechanism, which adds an additional critical facet to the complex glioblastoma resistance network.
Published: 24 October 2021
by MDPI
Abstract:
To achieve curative resection for pancreatic cancer during pancreaticoduodenectomy (PD), extensive portal vein (PV) resection, including porto-mesenterico-splenic confluence (PMSC), may sometimes be necessary if the tumor is close to the portal venous system. Recently, this extended resection has been widely accepted in high-volume centers for pancreatic resection due to its favorable outcomes compared with non-operative treatment. However, in patients with long-term survival, sinistral portal hypertension (SPH) occurs as a late-onset postoperative complication. These patients present gastrointestinal varices due to congested venous flow from the spleen, which may cause critical variceal bleeding. Since the prognosis of patients with pancreatic cancer has improved, owing to the development of chemotherapy and surgical techniques, SPH is no longer a negligible matter in the field of pancreatic cancer surgery. This review clarifies the pathogenesis and frequency of SPH after PD through PMSC resection and discusses its prediction and prevention.
Published: 23 October 2021
by MDPI
Abstract:
Early detection of pancreatic ductal adenocarcinoma (PDAC) is challenging, and late diagnosis partly explains the low 5-year survival. Novel and sensitive biomarkers are needed to enable early PDAC detection and improve patient outcomes. Tissue polypeptide specific antigen (TPS) has been studied as a biomarker in PDAC diagnostics, and it has previously been shown to reflect clinical status better than the ‘golden standard’ biomarker carbohydrate antigen 19-9 (CA 19-9) that is most widely used in the clinical setting. In this cross-sectional case-control study using pre-diagnostic plasma samples, we aim to evaluate the potential of TPS as a biomarker for early PDAC detection. Furthermore, in a subset of individuals with multiple samples available at different time points before diagnosis, a longitudinal analysis was used. We assessed plasma TPS levels using enzyme-linked immunosorbent assay (ELISA) in 267 pre-diagnostic PDAC plasma samples taken up to 18.8 years before clinical PDAC diagnosis and in 320 matched healthy controls. TPS levels were also assessed in 25 samples at PDAC diagnosis. Circulating TPS levels were low both in pre-diagnostic samples of future PDAC patients and in healthy controls, whereas TPS levels at PDAC diagnosis were significantly increased (odds ratio 1.03; 95% confidence interval: 1.01–1.05) in a logistic regression model adjusted for age. In conclusion, TPS levels increase late in PDAC progression and hold no potential as a biomarker for early detection.
Published: 23 October 2021
by MDPI
Abstract:
Background: Liver fibrosis is thought to be associated with early recurrence of hepatocellular carcinoma (HCC) after resection. To recognize HCC patients with higher risk of early recurrence, we used a second harmonic generation and two-photon excitation fluorescence (SHG/TPEF) microscopy to create a fully quantitative fibrosis score which is able to predict early recurrence. Methods: The study included 81 HCC patients receiving curative intent hepatectomy. Detailed fibrotic features of resected hepatic tissues were obtained by SHG/TPEF microscopy, and we used multi-dimensional artificial intelligence analysis to create a recurrence prediction model “combined index” according to the morphological collagen features of each patient’s non-tumor hepatic tissues. Results: Our results showed that the “combined index” can better predict early recurrence (area under the curve = 0.917, sensitivity = 81.8%, specificity = 90.5%), compared to alpha fetoprotein level (area under the curve = 0.595, sensitivity = 68.2%, specificity = 47.6%). Using a Cox proportional hazards analysis, a higher “combined index” is also a poor prognostic factor of disease-free survival and overall survival. Conclusions: By integrating multi-dimensional artificial intelligence and SHG/TPEF microscopy, we may locate patients with a higher risk of recurrence, follow these patients more carefully, and conduct further management if needed.
Published: 23 October 2021
by MDPI
Abstract:
Radiation-induced optic neuropathy (RION) is a rare side effect following radiation therapy involving the optic structures whose onset is, due to the low amount of available data, challenging to predict. We have analyzed a multi-institutional cohort including 289 skull-base cancer patients treated with proton therapy who all received >45 GyRBE to the optic apparatus. An overall incidence rate of 4.2% (12) was observed, with chordoma patients being at higher risk (5.8%) than chondrosarcoma patients (3.2%). Older age and arterial hypertension, tumor involvement, and repeated surgeries (>3) were found to be associated with RION. Based on bootstrapping and cross-validation, a NTCP model based on age and hypertension was determined to be the most robust, showing good classification ability (AUC-ROC 0.77) and calibration on our dataset. We suggest the application of this model with a threshold of 6% to segment patients into low and high-risk groups before treatment planning. However, further data and external validation are warranted before clinical application.
Published: 23 October 2021
by MDPI
Abstract:
Since their introduction several years ago, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have become the standard of care for breast and gynaecological cancers with BRCA gene mutations. Given that PARPi act by exploiting defective DNA repair mechanisms within tumour cells, they should be ideally suited to combatting haematological malignancies where these pathways are notoriously defective, even though BRCA mutations are rare. To date, despite promising results in vitro, few clinical trials in humans for haematological malignancies have been performed, and additional investigation is required. Paradoxically, secondary haematological malignancies have arisen in patients after treatment with PARPi, raising concerns about their potential use as therapies for any blood or bone marrow-related disorders. Here, we provide a comprehensive review of the biological, pre-clinical, and clinical evidence for and against treating individual haematological malignancies with approved and experimental PARPi. We conclude that the promise of effective treatment still exists, but remains limited by the lack of investigation into useful biomarkers unique to these malignancies.
Published: 23 October 2021
by MDPI
Abstract:
As key effector cells of the innate immune response, neutrophils are rapidly deployed to sites of inflammation where they deliver a payload of potent effector mechanisms that are essential for host defense against pathogens as well as tissue homeostasis. In addition, neutrophils are central contributors to the pathogenesis of a vast spectrum of inflammatory, degenerative, and neoplastic diseases. As our understanding of neutrophils in health and disease continually expands, so too does our appreciation of their complex and dynamic nature in vivo; from development, maturation, and trafficking to cellular heterogeneity and functional plasticity. Therefore, contemporary neutrophil research relies on multiple complementary methodologies to perform integrated analysis of neutrophil phenotypic heterogeneity, organ- and stimulus-specific trafficking mechanisms, as well as tailored effector functions in vivo. This review discusses established and emerging technologies used to study neutrophils, with a focus on in vivo imaging in animal models, as well as next-generation ex vivo model systems to study mechanisms of neutrophil function. Furthermore, we discuss how high-dimensional single-cell analysis technologies are driving a renaissance in neutrophil biology by redefining our understanding of neutrophil development, heterogeneity, and functional plasticity. Finally, we discuss innovative applications and emerging opportunities to integrate these high-dimensional, multi-modal techniques to deepen our understanding of neutrophils in cancer research and beyond.
Published: 23 October 2021
by MDPI
Abstract:
Immune checkpoint inhibitors can improve the prognosis of patients with advanced malignancy; however, only a small subset of advanced colorectal cancer patients in microsatellite-instability-high or mismatch-repair-deficient colorectal cancer can benefit from immunotherapy. Unfortunately, the mechanism behind this ineffectiveness is unclear. The tumor microenvironment plays a critical role in cancer immunity, and may contribute to the inhibition of immune checkpoint inhibitors and other novel immunotherapies in patients with advanced cancer. Herein, we demonstrate that the DNase I enzyme plays a pivotal role in the degradation of NETs, significantly dampening the resistance to anti-PD-1 blockade in a mouse colorectal cancer model by attenuating tumor growth. Remarkably, DNase I decreases tumor-associated neutrophils and the formation of MC38 tumor cell-induced neutrophil extracellular trap formation in vivo. Mechanistically, the inhibition of neutrophil extracellular traps with DNase I results in the reversal of anti-PD-1 blockade resistance through increasing CD8+ T cell infiltration and cytotoxicity. These findings signify a novel approach to targeting the tumor microenvironment using DNase I alone or in combination with immune checkpoint inhibitors.
Back to Top Top