International journal of molecular and cellular medicine

Journal Information
ISSN / EISSN : 2251-9637 / 2251-9645
Published by: Babol University of Medical Sciences (10.22088)
Total articles ≅ 209
Current Coverage
SCOPUS
PUBMED
PMC
ESCI
Archived in
SHERPA/ROMEO
Filter:

Latest articles in this journal

Amir Safi, , Reza Ahmadi
Published: 1 January 2021
by 10.22088
International Journal of Molecular and Cellular Medicine, Volume 10, pp 11-22; https://doi.org/10.22088/IJMCM.BUMS.10.1.11

Abstract:
Docetaxel is widely used in the treatment of metastatic breast cancer. However, its effectiveness is limited due to chemoresistance and its undesirable side effects. The combination of chemotherapeutic agents and natural compounds is an effective strategy to overcome drug resistance and the ensuing inevitable toxicities. Quercetin is a natural flavonoid with strong antioxidant and anticancer activities. This study aimed to evaluate the cytotoxic and modulatory effects of combined docetaxel and quercetin on the MDA-MB-231 human breast cancer cell line. The cell viability was assessed by MTT assay. The induction of apoptosis was examined using flow cytometry. The role of p53 in the apoptotic process was evaluated via qRT-PCR. The levels of BAX, BCL2, ERK1/2, AKT, and STAT3 proteins were measured by Western blot analysis. The results showed that the single-agent treatment with docetaxel or quercetin leads to a decrease in the viability of the MDA-MB-231 cells at 48 h. Furthermore, the combination of docetaxel (7 nM) and quercetin (95 μM) displayed the greatest synergistic effects with a combination index value of 0.76 accompanied by the up regulation of p53 and a significant increase in BAX level, as well as decrease in the levels of BCL2, pERK1/2, AKT, and STAT3 proteins (P < 0.05). The concomitant use of docetaxel and quercetin leads to the cell growth inhibition associated with the induction of apoptosis and inhibition of cell survival. Therefore, this study provides a promising therapeutic approach to enhance the efficacy of docetaxel in a less-toxic manner.
Maha Mohamed Farid Aql, Seham Abd-El Ghafour Bahget, Naglaa Kholoussi, Ghada Mohamed El Hossiny Abdel-Salam, Haiam Abdel Raouf, Maha Mohamed Eid, Rania El-Bialy Esmail
Published: 1 January 2021
by 10.22088
International Journal of Molecular and Cellular Medicine, Volume 10, pp 56-67; https://doi.org/10.22088/IJMCM.BUMS.10.1.56

Abstract:
Telomeres are nucleoprotein complexes present at the ends of chromosome to maintain its integrity. Telomere length is maintained by an enzyme called "telomerase". Thus, telomerase activity and telomere length are crucial for the initiation of cancer and tumors survival. Also, oxidative stress will cause DNA, protein, and/or lipid damage, which end with changes in chromosome instability, genetic mutation, and may affect cell growth and lead to cancer. Some genetic diseases such as chromosomal instability syndrome, overgrowth syndrome, and neurofibromatosis make the patients at higher risk for developing different types of cancers. Therefore, we aimed to estimate telomerase activity and oxidative stress in these patients. Blood samples were collected from 31 patients (10 with neurofibromatosis, 11 with chromosomal breakage, and 10 with overgrowth syndrome) and 12 healthy subjects. Blood hTERT mRNA was detected by real time quantitative reverse-transcription PCR (RT-qPCR). All patients were subjected to chromosomal examination and chromosome breakage study using diepoxybutane method. Moreover, serum glutathione (GSH), glutathione-s-transferase (GST) activity and nitric oxide (NO) levels were measured among the control and patients groups. Receiver operating characteristic (ROC) curve was drawn to evaluate the efficiency of telomerase activity as a biomarker for the prediction of cancer occurrence. The relative telomerase activity in neurofibromatosis patients was significantly higher than controls (P = 0.014), while it was non-significantly higher in chromosomal breakage and overgrowth patients (P = 0.424 and 0.129, respectively). NO levels in neurofibromatosis, chromosomal breakage and overgrowth patients significantly increased with respect to control (P = 0.021, 0.002, 0.050, respectively). GSH levels were non-significantly lower in neurofibromatosis and chromosomal breakage patients in comparison with the control group, while it remained unchanged in overgrowth patients. The GST activity was significantly upregulated in neurofibromatosis, chromosomal breakage and overgrowth groups in comparison with the control group (P = 0.001, 0.009, and 0.025, respectively). Chromosomal examination revealed normal karyotype in all four chromosomal breakage patients with positive diepoxybutane test. The results of the present study revealed altered telomerase activity and oxidative stress in the studied genetic disorders. More research studies with a larger number of patients are required to confirm whether this alteration is related to cancer occurrence risk or not.
, Ali Al Khader, Ezidin Kaddumi, Maher Obeidat, O'la Al-Fawares
Published: 1 January 2021
by 10.22088
International Journal of Molecular and Cellular Medicine, Volume 10, pp 34-44; https://doi.org/10.22088/IJMCM.BUMS.10.1.34

Abstract:
StAR related lipid transfer domain containing 3 (STARD3) gene has been reported to be co-amplified with human epidermal growth factor receptor 2 (HER2) in breast carcinoma. STARD3 is necessary for cholesterol transfer and metabolism in tumor cells. The possible role played by STARD3 as a diagnostic and prognostic biomarker was investigated in breast cancer (BC). Data mining was performed using several bioinformatics websites to investigate the correlation of STARD3 with BC and its molecular subtypes, and conventional PCR was used to detect the STARD3 mRNA levels in a panel of BC cell lines. STARD3 was overexpressed in BC more than the other types of cancer. The results also showed that STARD3 expression was significantly associated with HER2+ BC tumors and BC cell lines, and low STARD3 mRNA and protein expression levels were observed in estrogen receptor-positive (ER+) and triple-negative BC (TNBC) patients. Moreover, high STARD3 expression levels predicted worse overall survival (OS), relapse-free survival (RFS) and disease metastasis-free survival (DMFS) in BC, and HER2+ BC. Notably, low expression of STARD3 was associated with poor OS in ER+ BC. Our findings suggest that STARD3 may have strong diagnostic and prognostic value for HER2+ breast carcinoma.
Hussein Sabit, Huseyin Tombuloglu, Emre Cevik, Shaimaa Abdel-Ghany, Engy El-Zawahri, Amr El-Sawy, Sevim Isik, Ebtesam Alsuhaimi
Published: 1 January 2021
by 10.22088
International Journal of Molecular and Cellular Medicine, Volume 10, pp 45-55; https://doi.org/10.22088/IJMCM.BUMS.10.1.45

Abstract:
Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial cancer occurring in the oral cavity, where it accounts for nearly 90% of all oral cavity neoplasms. The c-MYC transcription factor plays an important role in the control of programmed cell death, normal-to-malignant cellular transformation, and progression of the cell cycle. However, the role of c-MYC in controlling the proliferation of OSCC cells is not well known. In this study, c-MYC gene was silenced in OSCC cells (ORL-136T), and molecular and cellular responses were screened. To identify the pathway through which cell death occurred, cytotoxicity, colony formation, western blotting, caspase-3, and RT-qPCR analyzes were performed. Results indicated that knockdown of c-MYC has resulted in a significant decrease in the cell viability and c-MYC protein synthesis. Furthermore, caspase-3 was shown to be upregulated leading to apoptosis via the intrinsic pathway. In response to c-MYC knockdown, eight cell proliferation-associated genes showed variable expression profiles: c-MYC (-21.2), p21 (-2.5), CCNA1(1.8), BCL2 (-1.4), p53(-3.7), BAX(1.1), and CYCS (19.3). p27 expression was dramatically decreased in c-MYC-silenced cells in comparison with control, and this might indicate that the relative absence of c-MYC triggered intrinsic apoptosis in OSCC cells via p27 and CYCS.
Chiman Mohammadi, Ali Mahdavinezhad, Massoud Saidijam, Fatemeh Bahreini, Abdolazim Sedighi Pashaki, Mohammad Hadi Gholami,
Published: 1 January 2021
by 10.22088
International Journal of Molecular and Cellular Medicine, Volume 10, pp 23-33; https://doi.org/10.22088/IJMCM.BUMS.10.1.23

Abstract:
Colorectal cancer (CRC) is one of the most prevalent diagnosed cancers and a common cause of cancer-related mortality. Despite effective clinical responses, a large proportion of patients undergo resistance to radiation therapy. Therefore, the identification of efficient targeted therapy strategies would be beneficial to overcome cancer radioresistance. Doublecortin-like kinase 1 (DCLK1) is an intestinal and pancreatic stem cell marker that showed overexpression in a variety of cancers. The transfection of DCLK1 siRNA to ‎normal HCT-116 cells was performed, and then cells were irradiated with X-rays. The effects of DCLK1 inhibition on cell survival, apoptosis, cell cycle, DNA damage response (ATM and γH2AX proteins), epithelial-mesenchymal transition (EMT) related genes (vimentin, N-cadherin, and E-cadherin), cancer stem cells markers (CD44, CD133, ALDH1, and BMI1), and β-catenin signaling pathway (β-catenin) were evaluated. DCLK1 siRNA downregulated DCLK1 expression in HCT-116 cells at both mRNA and protein levels (P <0.01). Colony formation assay showed a significantly reduced cell survival in the DCLK1 siRNA transfected group in comparison with the control group following exposure to 4 and 6 Gy doses of irradiation (P <0.01). Moreover, the expression of cancer stem cells markers (P <0.01), EMT related genes (P <0.01), and DNA repair proteins including pATM (P <0.01) and γH2AX (P <0.001) were significantly decreased in the transfected cells in comparison with the nontransfected group after radiation. Finally, the cell apoptosis rate (P <0.01) and the number of cells in the G0/G1 phase in the silencing DCLK1 group was increased (P <0.01). These findings suggest that DCLK1 can be considered a promising therapeutic target for the treatment of radioresistant human CRC.
Mahdi Noureddini,
Published: 1 January 2021
by 10.22088
International Journal of Molecular and Cellular Medicine, Volume 10, pp 1-10; https://doi.org/10.22088/IJMCM.BUMS.10.1.1

Abstract:
The neurogenesis can occur in two regions of the adult mammalian brain throughout the lifespan: the subgranular zone of the hippocampal dentate gyrus, and the subventricular zone of the lateral ventricle. The proliferation and maturation of neural progenitor cells are tightly regulated through intrinsic and extrinsic factors. The integration of maturated cells into the circuitry of the adult hippocampus emphasizes the importance of adult hippocampal neurogenesis in learning and memory. There is a large body of evidence demonstrating that alteration in the neurogenesis process in the adult hippocampus results in an early event in the course of Alzheimer's disease (AD). In AD condition, the number and maturation of neurons declines progressively in the hippocampus. Innovative therapies are required to modulate brain homeostasis. Mesenchymal stem cells (MSCs) hold an immense potential to regulate the neurogenesis process, and are currently tested in some brain-related disorders, such as AD. Therefore, the aim of this review is to discuss the use of MSCs to regulate endogenous adult neurogenesis and their significant impact on future strategies for the treatment of AD.
Hadi Rajabi, Somayeh Aslani,
Published: 1 January 2021
by 10.22088
International Journal of Molecular and Cellular Medicine, Volume 10, pp 68-74; https://doi.org/10.22088/IJMCM.BUMS.10.1.68

Abstract:
Mesenchymal stem cells have the fundamental ability to differentiate into multiple cells such as osteoblasts, neural cells, and insulin-producing cells. MicroRNAs (miRNAs) are single-strand and small non-coding RNAs involved in stem cells orientation into mature cells. There is no comprehensive data about the dynamic of distinct miRNAs during the differentiation of mesenchymal cells from adipose tissue into insulin-producing cells. In this study, we first differentiated adipose-derived mesenchymal stem cells into insulin-producing cells by a three-stepwise protocol. Differentiation capacity was confirmed by the dithizone staining method and hormone (insulin and C peptide) release analysis via electrochemiluminescence technique. In the final phase, the expression of hsa-miR-101a and hsa-miR-107 and two pancreatic genes, sex-determining region Y-box (SOX) 6 and neuronal differentiation 1 (NeuroD1) were examined during the differentiation procedure on days 0, 7, 14, 21, and 28 after induction, by using real-time PCR assay. The level of C-peptide and insulin were also measured at the end of the experiment. Dithizone staining showed trans-differentiation of adipose-derived mesenchymal stem cells into pancreatic β cells evidenced with red-to-brown appearance compared to the control group, indicating the potency to insulin production. These features were at maximum levels 28 days after cell differentiation. Real-time PCR revealed the increase of NeuroD1 and reduction of SOX6 during differentiation of stem cells toward insulin-producing cells (P <0.05). Both miR-101a and miR-107 showed prominent expression at day 28 (P <0.05). Changes in the expression of miR-101a and miR-107coincided with alteration of NeuroD1 and SOX6 that could affect mesenchymal stem cells commitment toward insulin-like beta cells.
Maryam Khorasani, Shirin Shahbazi, Nazanin Hosseinkhan,
Published: 29 October 2019
by 10.22088
International Journal of Molecular and Cellular Medicine, Volume 8, pp 103-114; https://doi.org/10.22088/ijmcm.bums.8.2.103

Abstract:
Early diagnosis of prostate cancer (PCa) as the second most common cancer in men is not associated with precise and specific results. Thus, alternate methods with high specificity and sensitivity are needed for accurate and timely detection of PCa. MicroRNAs regulate the molecular pathways involved in cancer by targeting multiple genes. The aberrant expression of the microRNAs has been reported in different cancer types including PCa. In this bioinformatics study, we studied differential expression profiles of microRNAs and their target genes in four PCa gene expression omnibus (GEO) databases. PCa diagnostic biomarker candidates were investigated using bioinformatics tools for analysis of gene expression data, microRNA target prediction, pathway and GO annotation, as well as ROC curves. The results of this study revealed significant changes in the expression of 14 microRNAs and 40 relevant target genes, which ultimately composed four combination panels (miR- 375+96+663/ miR- 133b+143- 3p + 205/ C2ORF72 + ENTPD5 + GLYAT11/LAMB3 + NTNG2+TSLP) as candidate biomarkers capable to distinguish between PCa tumor samples and normal prostate tissue samples. These biomarkers may be suggested for a more accurate early diagnosis of PCa patients along with current diagnostic tests.
Masoud Mahdavinia, Akram Ahangarpour, Leila Zeidooni, Azin Samimi, Saeid Alizadeh, Mohammad Amin Dehghani,
Published: 25 October 2019
by 10.22088
International Journal of Molecular and Cellular Medicine, Volume 8, pp 141-153; https://doi.org/10.22088/ijmcm.bums.8.2.141

Abstract:
Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide, which is used in many plastic industries. The present study aimed to evaluate the effect of BPA on cognitive functions and oxidative stress, and determine whether the naringin (NG) co-administration can modify the effect of this compound on cognitive functions and inhibit any possible oxidative stress in the brain tissue of rats. Adult male Wistar rats were divided into six groups. Group I: control, Group II: BPA-treated rats (50 mg/kg/day), Group III, IV, V: BPA+NG (40, 80, 160 mg/kg/day), Group VI: NG (160 mg/kg/day) alone. Cognitive functions were evaluated using step-down latency (SDL) on a passive avoidance apparatus, and transfer latency (TL) in elevated plus-maze. A significant decrease in SDL, prolongation of TL, noticeable oxidative impairment and increase in acetylcholinesterase activity were observed in the BPA-treated in comparison with the control group. Also, the co-administration of NG (160 mg/kg) antagonized the effect of BPA on SDL and TL, attenuated oxidative damage by lowering malondialdehyde and nitrite concentrations and restored superoxide dismutase, catalase, and glutathione S-transferase activities. On the other hand, acetylcholinesterase activity was reduced in the groups co-administred with NG (80 or 160 mg/kg) and BPA in comparison with the BPA alone-treated group. The present study highlighted the therapeutic potential of NG against BPA-induced cognitive impairment and oxidative damage.
Ali Shojaeian, Ameneh Mehri-Ghahfarrokhi,
Published: 19 September 2019
by 10.22088
International Journal of Molecular and Cellular Medicine, Volume 8, pp 154-160; https://doi.org/10.22088/ijmcm.bums.8.2.154

Abstract:
The capacity of human umbilical cord mesenchymal stem cells (hUMSCs) for migration and homing is very important in regenerative medicine. A detoxified derivative of lipopolysaccharides (LPS) that lacks many of the endotoxic properties of LPS is monophosphoryl lipid A (MPLA). Effects of MPLA on the induction of MSCs migration, have not yet been studied. Also, studies have shown that supernatant of Lactobacillus acidophilus (SLA) culture medium, can stimulate the proliferation of macrophages and lymphocytes in vitro by affecting the properties of the chemotaxis and angiogenesis. Our present study aimed to understanding of the migration of hUMSCs during treatment with MPLA and SLA, separately. HUMSCs were isolated from human umbilical cord and were characterized by investigating surface markers (CD105, CD90, anti-CD29, CD45, and CD34) and their differentiation into adipogenic and osteogenic lineages. HUMSCs were treated with MPLA (10-3 µg/ml) and SLA (3 µl/ml). The morphological changes were not observed in both treated MSCs. Expression levels of migration markers were determined by quantitative reverse transcription PCR analysis on 2, 4, 6 days after treatment. Results showed that VEGF and MMP-2 but not CXCR-4 was increased in the presence of both treatments. Also, SLA led to a decrease and increase of the expression of VLA-4 and VCAM-1, respectively, while MPLA increased both VLA-4 and VCAM-1 expression.Therefore, it can be suggested that MPLA has more prominent results than SLA, but both treatments can probably be considered as an inducing factor in migration.
Back to Top Top