International Journal of Power Electronics and Drive Systems (IJPEDS)

Journal Information
ISSN / EISSN : 2088-8694 / 2088-8694
Total articles ≅ 1,484
Current Coverage
SCOPUS
Archived in
SHERPA/ROMEO
Filter:

Latest articles in this journal

Islam K. Abdul-Razzaq, Mohamed M. Fahim Sakr, Yasir G. Rashid
International Journal of Power Electronics and Drive Systems (IJPEDS), Volume 12; https://doi.org/10.11591/ijpeds.v12.i3.pp1813-1822

Abstract:
This paper deals with an advanced design for a pump powered by solar energyto supply agricultural lands with water and also the maximum power point is used to extract the maximum value of the energy available inside the solar panels and comparing between techniques MPPT such as Incremental conductance, perturb & observe, fractional short current circuit, and fractional open voltage circuit to find the best technique among these. The solar system is designed with main parts: photovoltaic (PV) panel, direct current/direct current (DC/DC) converter, inverter, filter, and in addition, the battery is used to save energy in the event that there is an increased demand for energy and not to provide solar radiation, as well as saving energy in the case of generation more than demand. This work was done using the matrix laboratory (MATLAB) simulink program.
Radouane Majdoul, Abelwahed Touati, Abderrahmane Ouchatti, Abderrahim Taouni, Elhassane Abdelmounim
International Journal of Power Electronics and Drive Systems (IJPEDS), Volume 12; https://doi.org/10.11591/ijpeds.v12.i3.pp1687-1698

Abstract:
A new bidirectional multilevel inverter topology with a high number of voltage levels with a very reduced number of power components is proposed in this paper. Only TEN power switches and four asymmetric DC voltage sources are used to generate 25 voltage levels in this new topology. The proposed multilevel converter is more suitable for e-mobility and photovoltaic applications where the overall energy source can be composed of a few units/associations of several basic source modules. Several benefits are provided by this new topology: Highly sinusoidal current and voltage waveforms, low Total Harmonic Distortion, very low switching losses, and minimum cost and size of the device. For optimum control of this 25-level voltage inverter, a special Modified Hybrid Modulation technique is performed. The proposed 25-level inverter is compared to various topologies published recently in terms of cost, the number of active power switches, clamped diodes, flying capacitors, DC floating capacitors, and the number of DC voltage sources. This comparison clearly shows that the proposed topology is cost-effective, compact, and very efficient. The effectiveness and the good performance of the proposed multilevel power converter (with and without PWM control) are verified and checked by computational simulations.
Mohamed Amine Kazi, Radouane Majdoul, Nadia Machkour
International Journal of Power Electronics and Drive Systems (IJPEDS), Volume 12; https://doi.org/10.11591/ijpeds.v12.i3.pp1566-1575

Abstract:
The growing demand for electricity and the increasing integration of clean energies into the electrical grids requires the multiplication and reinforcement of high-voltage direct current (HVDC) projects throughout the world and demonstrates the interest in this electricity transmission technology. The transmitting system of the voltage source converter-high-voltage direct current (VSC-HVDC) consists primarily of two converter stations that are connected by a dc cable. In this paper, a nonlinear control based on the backstepping approach is proposed to improve the dynamic performance of a VSC-HVDC transmission system, these transport systems are characterized by different complexities such as parametric uncertainties, coupled state variables, neglected dynamics, presents a very interesting research topic. Our contribution through adaptive control based on the backstepping approach allows regulating the direct current (DC) bus voltage and the active and reactive powers of the converter stations. Finally, the validity of the proposed control has been verified under various operating conditions by simulation in the MATLAB/Simulink environment.
Lahcen Ouboubker, Jawad Lamterkati, Mohamed Khafallah, Aziz El Afia
International Journal of Power Electronics and Drive Systems (IJPEDS), Volume 12; https://doi.org/10.11591/ijpeds.v12.i3.pp1358-1368

Abstract:
This paper presents simulation and experimental results of anti-windup PI controller to improve induction machine speed control based on direct torque control (DTC) strategy. Problems like rollover can arise in conventional PI controller due to saturation effect. In order to avoid such problems anti-windup PI controller is presented. This controller is simple for implementation in practice. The proposed anti-windup PI controller demonstrates better dynamic step changes response in speed in terms of overshoots. All simulation work was done using Simulink in the MATLAB software. The experimental results were obtained by practical implementation on a dSPACE 1104 board for a 1.5 KW induction machine. Simulation and experimental results have proven a good performance and verified the validity of the presented control strategy.
Mahmoud Zadehbagheri, Tole Sutikno, Rahim Ildarabadi
International Journal of Power Electronics and Drive Systems (IJPEDS), Volume 12; https://doi.org/10.11591/ijpeds.v12.i3.pp1644-1658

Abstract:
Environmental factors such as air pollution and increase in global warming by using polluting fuels are the most important reasons of using renewable and clean energy that runs in global community. Wind energy is one of the most suitable and widely used kind of renewable energy which had been in consideration so well. This paper introduces an electric power generationsystem of wind based on Y-source and improved Y-source inverter to deliver optimal electrical power to the network. This new converter is from impedance source converters family. This presented converter has more degrees of freedom to adjust voltage gain and modulation. Also, by limiting the range of simultaneous control (shooting through) while it maintains thehighest power of maximizer, it can operate in higher modulation range. This causes the reduce of stress in switching and thus it will improve the quality of output. Recommended system had been simulated in MATLAB/Simulink and shown results indicate accurate functionality.
N. Sharmila, K. R. Nataraj, K. R. Rekha
International Journal of Power Electronics and Drive Systems (IJPEDS), Volume 12; https://doi.org/10.11591/ijpeds.v12.i3.pp1439-1449

Abstract:
The power generation using solar photovoltaic (PV) system in microgrid requires energy storage system due to their dilute and intermittent nature. The system requires efficient control techniques to ensure the reliable operation of the microgrid. This work presents dynamic power management using a decentralized approach. The control techniques in microgrid including droop controllers in cascade with proportional-integral (PI) controllers for voltage stability and power balance have few limitations. PI controllers alone will not ensure microgrid’s stability. Their parameters cannot be optimized for varying demand and have a slow transient response which increases the settling time. The droop controllers have lower efficiency. The load power variation and steady-state voltage error make the droop control ineffective. This paper presents a control scheme for dynamic power management by incorporating the combined PI and hysteresis controller (CPIHC) technique. The system becomes robust, performs well under varying demand conditions, and shows a faster dynamic response. The proposed DC microgrid has solar PV as an energy source, a lead-acid battery as the energy storage system, constant and dynamic loads. The simulation results show the proposed CPIHC technique efficiently manages the dynamic power, regulates DC link voltage and battery’s state of charge (SoC) compared to conventional combined PI and droop controller (CPIDC).
Ahmed Thamer Radhi, Wael Hussein Zayer, Adel Manaa Dakhil
International Journal of Power Electronics and Drive Systems (IJPEDS), Volume 12; https://doi.org/10.11591/ijpeds.v12.i3.pp1928-1939

Abstract:
This paper presents a fast and accurate fault detection, classification and direction discrimination algorithm of transmission lines using one-dimensional convolutional neural networks (1D-CNNs) that have ingrained adaptive model to avoid the feature extraction difficulties and fault classification into one learning algorithm. A proposed algorithm is directly usable with raw data and this deletes the need of a discrete feature extraction method resulting in more effective protective system. The proposed approach based on the three-phase voltages and currents signals of one end at the relay location in the transmission line system are taken as input to the proposed 1D-CNN algorithm. A 132kV power transmission line is simulated by Matlab simulink to prepare the training and testing data for the proposed 1D- CNN algorithm. The testing accuracy of the proposed algorithm is compared with other two conventional methods which are neural network and fuzzy neural network. The results of test explain that the new proposed detection system is efficient and fast for classifying and direction discrimination of fault in transmission line with high accuracy as compared with other conventional methods under various conditions of faults.
El Hadi Chahid, Mohamed Lotfi, Osama Lotfi, My Abdelaziz Koumina, Rodolphe Heyd, Abdessamad Malaoui
International Journal of Power Electronics and Drive Systems (IJPEDS), Volume 12; https://doi.org/10.11591/ijpeds.v12.i3.pp1772-1783

Abstract:
The electrical and environmental parameters of polymer solar cells (PSC) provide important information on their performance. In the present article we study the influence of temperature on the voltage-current (I-V) characteristic at different temperatures from 10 °C to 90 °C, and important parameters like bandgap energy Eg, and the energy conversion efficiency η. The one-diode electrical model, normally used for semiconductor cells, has been tested and validated for the polemeral junction. The PSC used in our study are formed by the poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). Our technique is based on the combination of two steps; the first use the Least Mean Squares (LMS) method while the second use the Newton-Raphson algorithm. The found results are compared to other recently published works, they show that the developed approach is very accurate. This precision is proved by the minimal values of statistical errors (RMSE) and the good agreement between both the experimental data and the I-V simulated curves. The obtained results show a clear and a monotonic dependence of the cell efficiency on the studied parameters.
Amin Alizadeh Asl
International Journal of Power Electronics and Drive Systems (IJPEDS), Volume 12; https://doi.org/10.11591/ijpeds.v12.i3.pp1620-1631

Abstract:
A hybrid DC/DC/AC converter connected to the grid without a three-phase transformer is controlled. The decentralized control method is applied to the hybrid DC-DC converter such that the maximum power of PV flows to the grid side. This controller must charge and discharge the battery at the proper time. It must also regulate DC-link voltage. An additional advantage of the proposed control is that the three-phase inverter does not need a separate controller such as PWM and SPWM. A simple technique is used for creating the desired phase shift in the three-phase inverter, which makes the active and reactive power of the inverter controllable. A new configuration is also proposed to transmit and manage the generation power of PV. In thisscheme, the battery and fuel cell are employed as an auxiliary source to manage the generation power of PV. Finally, a real-time simulation is performed to verify the effectiveness of the proposed controller and system by considering the real characteristics of PV and FC.
Suwarno Suwarno, Rohana Rohana
International Journal of Power Electronics and Drive Systems (IJPEDS), Volume 12; https://doi.org/10.11591/ijpeds.v12.i3.pp1823-1831

Abstract:
The development of modeling wind speed plays a very important in helping to obtain the actual wind speed data for the benefit of the power plant planning in the future. The wind speed in this paper is obtained from a PCE-FWS 20 type measuring instrument with a duration of 30 minutes which is accumulated into monthly data for one year (2019). Despite the many wind speed modeling that has been done by researchers. Modeling wind speeds proposed in this study were obtained from the modified Rayleigh distribution. In this study, the Rayleigh scale factor (Cr) and modified Rayleigh scale factor (Cm) were calculated. The observed wind speed is compared with the predicted wind characteristics. The data fit test used correlation coefficient (R2), root means square error (RMSE), and mean absolute percentage error (MAPE). The results of the proposed modified Rayleigh model provide very good results for users.
Back to Top Top