Open Journal of Civil Engineering

Journal Information
ISSN / EISSN : 21643164 / 21643172
Current Publisher: Scientific Research Publishing, Inc, (10.4236)
Total articles ≅ 318
Archived in

Latest articles in this journal

Gilbert Ganga, Narcisse Malanda, Diogène Pongui Ngoma, Timothée Nsongo, Michel Dzondo Gadet
Open Journal of Civil Engineering, Volume 10, pp 9-21; doi:10.4236/ojce.2020.101002

Abstract:This study includes the manufacture of cement stabilized clay bricks with embedded mahogany chips. The impact of this waste and its interaction with water in the bricks was evaluated on the mechanical properties. The compressive strength tests using a universal press were carried out on bricks with and without adding wood chips. The results obtained show that the incorporation of wood chips into the bricks decreases the compressive strength. This reduction in compressive strength led us to conduct an analysis of clay and water as intrinsic factors, before and after incorporation of untreated wood waste. Thus, a mineralogical analysis of the clay with and without mahogany chips was made using an X-ray diffractometer, using an anticathode of cobalt with the line Κα, of wavelength λ = 1789Å. After quantification of the mineral constituents, it is noted that the concentration of SiO2 decreases considerably in the clay with addition of wood chips, resulting in the reduction of the compressive strength in these composite materials (from Rc = 9.26 MPa at 0% of chips to 3.55 MPa at 8%). A mathematical model following the interpolations of Lagrange was then proposed. The analysis of the water resulting from the impregnation of dry wood chips in the water, shows that the water becomes strongly acid (pH = 4.3 at the 7th day of immersion), thus contributing to the reduction of resistance. This analysis of intrinsic factors will allow future studies to take into account the treatment of wood waste by different processes in order to increase the mechanical, thermal and acoustic properties of composite bricks with the same contents, thus generating massive support for the use of its composite materials.
Ishtiaque Ahmed Tuhin
Open Journal of Civil Engineering, Volume 10, pp 1-8; doi:10.4236/ojce.2020.101001

Abstract:Overhead sign-support bridges that allow displaying necessary information for travelers across the multiple lanes in highways often use large message sign panels: static message sign (SMS) panels or dynamic message sign (DMS) panels. Along with conventional SMS panel, the use of DMS panel is increasing in highways over time owing to their effective capability to guide the travelers in real-time. A 230-ft long span 4-chord overhead steel truss bridge attached with SMS and DMS panel has been studied through extensive finite element analysis to observe the structural integrity. The static wind load was applied in model truss for four different configurations as per 2016 AASHTO LRFD design specification. The innovative structural detailing approach for truss end support and connection detailing for toll-equipment supporting frame was proposed based on static analysis. The present study will help engineers to design overhead sign support bridges by ensuring both public safety and structural integrity.
Séverin Jean Maixent Loubouth, Louis Ahouet, Raymond Gentil Elenga, Sylvain Ndinga Okina, Paul Louzolo Kimbembe
Open Journal of Civil Engineering, Volume 10, pp 22-31; doi:10.4236/ojce.2020.101003

Abstract:This work consisted in determining the geotechnical properties of the soil of the Cubitermes termite mound soil treated with lime for use in road construction in accordance with the relevant standards. The raw soil is composed of 29.45% clay, 45.12% silt and 25.43% sand, and its granulometric curve is above the relevant standard curve. The addition of lime up to 9% decreases the fine fraction content from 75% to 60%, and the maximum dry density from 1.62 t/m3 to 1.36 t/m3. The reduction of the fine fraction should reduce the soil sensitivity to water, and the emission of dust from the road. The compressive strength of the raw soil (3.89 MPa) is higher than that of most cohesive soil, and is probably one the causes of the longevity of the rural road paved with this soil. Treated soil with 6% in lime content has the highest compressive strength (5.95 MPa), and the lowest deformation at failure. Until 28 days, the improvement of the compressive upon the curing time is almost the same for untreated and treated termite mound soils. Thus, this improvement could be mostly attributed to the drying of the samples instead to the pozzolanic reactions. Besides, adding lime also enhances the shear strength of soil. Therefore, adding lime up to 6% in content to the termite mound soil should improve its behavior as surface roads.
Kongliang Chen, Guoqing Yuan, Liankun Wang, Wenzhi Zhang, Xiaoke Wang
Open Journal of Civil Engineering, Volume 9, pp 255-267; doi:10.4236/ojce.2019.94018

Abstract:The steel roof of Jiangmen gymnasium is the large-span spatial pipe truss structure, which is composed of main truss, secondary truss and stable truss. This paper systematically expounds the construction simulation analysis, the composition of the construction monitoring system, the monitoring method, and the arrangement of measuring points. The construction simulation analysis simulates the whole process of the main truss cumulative lifting installation, the secondary truss and auxiliary structure hoisting, and then the main truss for overall unloading, which is the difficulty of the whole project. The results of the structural construction monitoring show that the roof structure is in a safe state, and the fine construction simulation analysis provides a theoretical basis for the construction process, and the theoretical value of the simulation analysis is in good agreement with the measured data. In addition, vertical displacement and stress are obvious mutations in the unloading stage of roof support, but the stress of each measuring point is in elastic working condition, which meets the design requirements, indicating the correctness of the model and method in construction simulation analysis and calculation, and also provides reference for the design and construction of related projects in the future.
Motohei Kanayama, Satoko Kawamura
Open Journal of Civil Engineering, Volume 9, pp 173-184; doi:10.4236/ojce.2019.93012

Abstract:For soil improvement, a method using plant fiber has been used since ancient times. In recent years, the construction method using plant fiber has attracted attention as a ground improvement technology with less environmental load. In this work, the soil improvement effect using waste bamboo fiber was experimentally examined. The liquid limit and plastic limit of the mixed soil tended to increase with increasing bamboo fiber content and there was no change in the plasticity index of the mixed soil by the difference of bamboo fiber content. As a result from the compaction test and unconfined compression test, it was revealed that mixing of bamboo fiber resulted in a reduction of soil material required for construction and increasing in strength. The maximum compressive stress of the bamboo fiber mixed soil at the mixing ratio of 0%, 1%, 3% and 5% were 115, 108, 130 and 152 kN/m2, respectively. As the soil with fiber showed the lower stiffness and higher strength than that without fiber in the dry region, it can be judged that the addition of fiber brought ductility to the soil. And it was found that the decrease in the stiffness of the specimen due to the increase of water content was suppressed by the addition of the bamboo fiber. From the results of the observation with the digital microscope, it was observed that the two-layer structure consisting of the main relatively thick fibrous structure and the secondary capillary fibrous structure were formed. Thus, it was found that the complex structure of the bamboo fiber is deeply involved in the strength of the mixed soil.
Kayibanda Patrick, Richard Ocharo Onchiri, Geoffrey N. Mang’Uriu
Open Journal of Civil Engineering, Volume 9, pp 185-194; doi:10.4236/ojce.2019.93013

Abstract:The present work tried to develop suitable proportions for the production of Pineapple Leaf Fibers (PALF) reinforced Normal Strength Concrete (NSC), an experimental analysis with a mix ratio of 1:1.84:3.27 for cement: fine aggregates: coarse aggregates with constant water to cement ratio of 0.54. The total volume per mixing batch was calculated of 9 cubes + 9 cylinders + 3 beams in order to know the number of materials to be used in casting per batch, and the PALF percentage was taken based on cement weight whereby it starts from the lowest to the maximum as follow 0%, 0.2%, 0.4%, 0.6%, 0.8%, and 1%. The tests that were done on fresh concrete were compacting factors and workability using the slump test which was carried out on each fresh mix of concrete. The results showed that PALF can be used to improve the Tensile and Flexural properties of Normal Strength Concrete.
Dak Bahadur Khadka
Open Journal of Civil Engineering, Volume 9, pp 195-210; doi:10.4236/ojce.2019.93014

Ekele A. Ogwu, Friday I. Apeh, Angela A. Ogwu, Babatunde S. Yahaya
Open Journal of Civil Engineering, Volume 9, pp 356-366; doi:10.4236/ojce.2019.94024

Abstract:Pozzolana which is an eco-friendly and cheap supplementary cementious material has not been established on a commercial scale in the construction industry in Nigeria. Hence, this paper is aimed at presenting a feasibility study to show the viability and highlight the business opportunities available for local and foreign investors in the area of pozzolana production in Nigeria. The paper discussed the technical requirements and estimated start-up capital for setting up a Pozzolana production plant from calcinated of Fifteen Thousand Tonnes Annual Production Capacity. An outline for start-up capital identified building and civil work, furniture and fixtures, machinery and equipment requirement, intangible assets, and seed fund. Raw materials/utilities and organizational requirement for annual production were also presented. The investment is viable with a total investment cost of $507,321.23, annual net profit of $107,961.70 and a payback period of 4.7 years. The net profit ratio and rate of return are 16.28% and 21.28% respectively. The findings and understanding of the technical and financial requirements from this work will aid investors in making decisions. The project if carried out will reduce cement contents in concrete and mortar structures, with eco-friendly cement admixtures and subsequently reduce the cost of construction in general.
Hans Rönnqvist
Open Journal of Civil Engineering, Volume 9, pp 311-318; doi:10.4236/ojce.2019.94022

Abstract:The dry-separation method is an alternative to the wet-preparation in the current European Standard for the determination of particle size distributions by the sieving of soils. Due to the risk of error, dry-separation is cautioned against in the standard; however, there is no additional guidance as to when it is unsuitable nor for the magnitude of error that it may introduce. This study investigates the dry-separation method as an alternative by comparing with the conventional method of Wet-preparation in terms of particle-size distributions of eight cohesionless sand-gravel soils with varying amounts of nonplastic fines. The findings indicate a gradually increasing sieving error for fractions at minus 0.5 mm with the amount of fines in the soil, and depending on the fines content of the soil, dry-separation introduced errors upwards of 45% in silt-sand-gravel soils. An empirical best-fit formula is proposed for the estimation of the error using the dry-preparation method on this type of soil. Furthermore, to avoid sieving errors, the results suggest that the dry-separation method should not be used for silt-sand-gravel soils exceeding 2% silt size fractions.
Ibrahima Sow, Ibrahima Khalil Cisse
Open Journal of Civil Engineering, Volume 9, pp 291-310; doi:10.4236/ojce.2019.94021

Abstract:The study of the performances of the Archean of Man gneiss aggregates with the addition of filler to replace the basalt of Kasila group in the asphalt and concrete mix design of southern Sierra Leone is presented in this document. The goal is to compare the results of the asphalt and concrete mix design with gneiss and basalt aggregate. The applied methods and design used are 1) Volumetric design and Marshall method for the asphalt, 2) French Dreux-Gorisse Method for the concrete. We added 2% of gneissic filler and 2% portland cement type 42.5 R to the asphalt hot mix with the gneiss aggregates to follow the criteria variation. The Marshall, the diametric compression and the Duriez tests require us to perform four different types of mix design. The four mix designs meet the requirements but F2 and F4 give the best mechanical properties. F2 (gneiss + 2% filler) and F4 (basalt) have many similarities from which we can conclude their interchangeability. F2 gives 5255 of optimal bitumen content. In regards to hydraulic concrete, the results of the compressive strength test (cement content 350 kg CMI 42.5 R/m3) with the gneiss and basalt aggregates are respectively 40 MPa and 45 MPa at 28 days curing: these values are greater than 35 MPa required by the technical specifications. The use of the Super Fluid ® Thermoplast 120 admixture, to increase the concrete compressive strength, is justified by the requirement of a minimum of 80% Rc28 at 24 hours. For both types of concrete, we have at 24 hours, 34 and 35 MPa which are higher than the minimum of 32 MPa (in 24 h). These results meet the requirements of the technical specifications.