Open Journal of Civil Engineering

Journal Information
ISSN / EISSN : 21643164 / 21643172
Current Publisher: Scientific Research Publishing, Inc. (10.4236)
Total articles ≅ 340
Archived in

Latest articles in this journal

Gilbert Ganga, Narcisse Malanda, Diogène Pongui Ngoma, Timothée Nsongo, Michel Dzondo Gadet
Open Journal of Civil Engineering, Volume 10, pp 9-21; doi:10.4236/ojce.2020.101002

This study includes the manufacture of cement stabilized clay bricks with embedded mahogany chips. The impact of this waste and its interaction with water in the bricks was evaluated on the mechanical properties. The compressive strength tests using a universal press were carried out on bricks with and without adding wood chips. The results obtained show that the incorporation of wood chips into the bricks decreases the compressive strength. This reduction in compressive strength led us to conduct an analysis of clay and water as intrinsic factors, before and after incorporation of untreated wood waste. Thus, a mineralogical analysis of the clay with and without mahogany chips was made using an X-ray diffractometer, using an anticathode of cobalt with the line Κα, of wavelength λ = 1789Å. After quantification of the mineral constituents, it is noted that the concentration of SiO2 decreases considerably in the clay with addition of wood chips, resulting in the reduction of the compressive strength in these composite materials (from Rc = 9.26 MPa at 0% of chips to 3.55 MPa at 8%). A mathematical model following the interpolations of Lagrange was then proposed. The analysis of the water resulting from the impregnation of dry wood chips in the water, shows that the water becomes strongly acid (pH = 4.3 at the 7th day of immersion), thus contributing to the reduction of resistance. This analysis of intrinsic factors will allow future studies to take into account the treatment of wood waste by different processes in order to increase the mechanical, thermal and acoustic properties of composite bricks with the same contents, thus generating massive support for the use of its composite materials.
Rebecca Belay Kassa, Tenaw Workie, Alyu Abdela, Mikiyas Fekade, Mubarek Saleh, Yonas Dejene
Open Journal of Civil Engineering, Volume 10, pp 55-68; doi:10.4236/ojce.2020.101006

Expansive clay soils are the types of soils whose volume changes with the change in water content. They have a behavior of swelling and shrinking that is a serious hazard to structures built over them. Expansive soils are abundantly existing soil types in Ethiopia, particularly Addis Ababa. This paper shows the outcomes of an attempt to reinforce and stabilize expansive clay soil with plastic bottle strips. The plastic strips were prepared and added at three different mixing ratios (0.5%, 1% and 2%) by weight and in three different aspect ratios (5 mm × 7.5 mm, 10 mm × 15 mm, 15 mm × 20 mm). The experimental results showed that there was a significant improvement in shear strength parameters. The swelling and desiccation cracking behavior of the soil were also expressively reduced. There was a substantial reduction in the optimum moisture content and slight increment in maximum dry density. The optimum plastic size (aspect ratio) and plastic content that results in optimum result can be selected based on the importance of the selection parameter for a specified engineering work. Stabilizing expansive clay soils with waste plastic bottles simultaneously solves the challenges of improper plastic waste recycling that is currently a teething problem in most developing countries. The results obtained from this study favorably suggest that inclusion of this material in expansive soils would be effective for ground improvement in geotechnical engineering.
Séverin Jean Maixent Loubouth, Louis Ahouet, Raymond Gentil Elenga, Sylvain Ndinga Okina, Paul Louzolo Kimbembe
Open Journal of Civil Engineering, Volume 10, pp 22-31; doi:10.4236/ojce.2020.101003

This work consisted in determining the geotechnical properties of the soil of the Cubitermes termite mound soil treated with lime for use in road construction in accordance with the relevant standards. The raw soil is composed of 29.45% clay, 45.12% silt and 25.43% sand, and its granulometric curve is above the relevant standard curve. The addition of lime up to 9% decreases the fine fraction content from 75% to 60%, and the maximum dry density from 1.62 t/m3 to 1.36 t/m3. The reduction of the fine fraction should reduce the soil sensitivity to water, and the emission of dust from the road. The compressive strength of the raw soil (3.89 MPa) is higher than that of most cohesive soil, and is probably one the causes of the longevity of the rural road paved with this soil. Treated soil with 6% in lime content has the highest compressive strength (5.95 MPa), and the lowest deformation at failure. Until 28 days, the improvement of the compressive upon the curing time is almost the same for untreated and treated termite mound soils. Thus, this improvement could be mostly attributed to the drying of the samples instead to the pozzolanic reactions. Besides, adding lime also enhances the shear strength of soil. Therefore, adding lime up to 6% in content to the termite mound soil should improve its behavior as surface roads.
Abdoulaye Diedhiou, Libasse Sow, Ndeye Mareme Diop
Open Journal of Civil Engineering, Volume 10, pp 131-142; doi:10.4236/ojce.2020.102012

This article first talks about railways in general and ballast in particular. An inventory is then made on the modernization of the Senegalese ballast railways. In the second phase, an experimental work of characterization of basaltic aggregates of Diack (Locality of Ngoundiane, Thiès region, Senegal) is presented. The grain size studied is 25/50 mm as for any material studied for use as railway ballast. Experimental work presented consists of the characterization of the shape of an aggregate using the NF P 18-301 standard. The test consists of comparing the volume of the aggregate to that of an equivalent sphere with the largest diameter of the aggregate, by calculating the average volume coefficient. With a Representative Elementary Volume (REV) of 6 aggregates, the volume coefficient “Cv” fluctuates between 0.27 and 0.49 with an average volume coefficient of 0.39 which is well above 0.15. The grains studied are polyhedral and therefore have a high mechanical resistance.
Lu Dong, Hansheng Geng, Hongfa Xu, Yinhao Yang
Open Journal of Civil Engineering, Volume 10, pp 83-92; doi:10.4236/ojce.2020.102008

Rocks are composed of mineral particles and micropores between mineral which has a great influence on the mechanical properties of rocks. In this paper, based on the theory of locked-in stress developed by academician Chen Zongji, the locked-in stress problem in underground rock is simulated by the thermal expansion of hard rubber particles. The pore inclusion in rock is assumed to be uniformly distributed spherical cavities. Using the thermal stress theory, the stress of rock with a spherical pore inclusion is equivalent to the thermal stress generated by the spherical hard rubber inclusion. The elastic theory formula of the temperature increment and the equivalent pore pressure of the spherical hard rubber inclusion is derived. The numerical simulation of the rock mass model with a spherical hard rubber inclusion is carried out and compared to the theoretical calculation results; the results show that they are consistent. The method proposed by this paper for simulating stress distribution in rock by thermal stress is reasonable and feasible; it has a positive meaning for further study of mechanic phenomenon of rock with micropore inclusion.
Luxi Lu
Open Journal of Civil Engineering, Volume 10, pp 250-258; doi:10.4236/ojce.2020.103021

In recent years, the number of permanent residents in Chengdu, Sichuan Province, China has continued to grow, and the number of private cars keeps rising. A series of problems caused by difficult parking and random parking in old communities are common. This paper will take the parking problem of the old community in Yingmenkou community, Chengdu, China as an example to summarize the current situation and parking problems of the private car parking facilities in these old communities. Based on Chengdu’s current old community parking management policy, parking facility renovation and expansion policy, this paper researches and establishes a parking resource sharing model suitable for old communities. The simulation results show that this model has a small footprint and is easy to install and disassemble. It can be freely spliced and combined units according to the size of the old community and the needs of residents. It is suitable for old communities with no centralized parking lot and high parking demand by residents.
Tonye Ngoji Johnarry, Francis Williams Ebitei
Open Journal of Civil Engineering, Volume 10, pp 105-116; doi:10.4236/ojce.2020.102010

The pure shear strength for the all-simply supported plate has not yet been found; what is described as pure shear in that plate, is, in fact, a pure-shear solution for another plate clamped on the “Y-Y” and simply supported on the long side, X-X. A new solution for the simply supported case is presented here and is found to be only 60-percent of the currently believed results. Comparative results are presented for the all-clamped plate which exhibits great accuracy. The von Misses yield relation is adopted and through incremental deflection-rating the effective shear curvature is targeted in aspect-ratios. For a set of boundary conditions the Kirchhoff’s plate capacity is finite and invariant for bending, buckling in axial and pure-shear and in vibration.
Ishtiaque Ahmed Tuhin
Open Journal of Civil Engineering, Volume 10, pp 1-8; doi:10.4236/ojce.2020.101001

Overhead sign-support bridges that allow displaying necessary information for travelers across the multiple lanes in highways often use large message sign panels: static message sign (SMS) panels or dynamic message sign (DMS) panels. Along with conventional SMS panel, the use of DMS panel is increasing in highways over time owing to their effective capability to guide the travelers in real-time. A 230-ft long span 4-chord overhead steel truss bridge attached with SMS and DMS panel has been studied through extensive finite element analysis to observe the structural integrity. The static wind load was applied in model truss for four different configurations as per 2016 AASHTO LRFD design specification. The innovative structural detailing approach for truss end support and connection detailing for toll-equipment supporting frame was proposed based on static analysis. The present study will help engineers to design overhead sign support bridges by ensuring both public safety and structural integrity.
Isa Abdulkadir, H. M. Alhasssan
Open Journal of Civil Engineering, Volume 10, pp 93-104; doi:10.4236/ojce.2020.102009

The present work investigated the properties of the commonly used Butimen for road construction in Nigeria (60/70 pen.) for normal temperature and climate Effect. The laboratory tests conducted were penetration, softening point, viscosity, ductility test and flash and fire point test based on the ASTM standards. The result indicates a decrease in stiffness of bitumen with an increase in temperature, with a decrease in penetration of bitumen by 85.5% when tested between 25°C to 43.2°C and also the Ductility decreases with increase in temperature by 54.9% between 25°C and 43.2°C. The viscosity result shows a decrease in viscosity with an increase in temperature, therefore at higher temperature Bitumen is likely to flow.
Mouhamed Lamine Chérif Aidara, Makhaly Ba, Alan Carter
Open Journal of Civil Engineering, Volume 10, pp 195-212; doi:10.4236/ojce.2020.103017

Back to Top Top