Communications Biology

Journal Information
EISSN : 2399-3642
Current Publisher: Springer Science and Business Media LLC (10.1038)
Former Publisher:
Total articles ≅ 2,164
Current Coverage
Archived in

Latest articles in this journal

Jungang Chen, Lu Dai, Lindsey Barrett, Jennifer James, Karlie Plaisance-Bonstaff, Steven R. Post,
Communications Biology, Volume 4, pp 1-6; doi:10.1038/s42003-021-02220-z

An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of Coronavirus Disease-2019 (COVID-19), a respiratory disease, has infected almost one hundred million people since the end of 2019, killed over two million, and caused worldwide social and economic disruption. Because the mechanisms of SARS-CoV-2 infection of host cells and its pathogenesis remain largely unclear, there are currently no antiviral drugs with proven efficacy. Besides severe respiratory and systematic symptoms, several comorbidities increase risk of fatal disease outcome. Therefore, it is required to investigate the impacts of COVID-19 on pre-existing diseases of patients, such as cancer and other infectious diseases. In the current study, we report that SARS-CoV-2 encoded proteins and some currently used anti-COVID-19 drugs are able to induce lytic reactivation of Kaposi’s sarcoma-associated herpesvirus (KSHV), one of major human oncogenic viruses, through manipulation of intracellular signaling pathways. Our data indicate that those KSHV + patients especially in endemic areas exposure to COVID-19 or undergoing the treatment may have increased risks to develop virus-associated cancers, even after they have fully recovered from COVID-19.
Melisa Lázaro, Roberto Melero, Charlotte Huet, Jorge P. López-Alonso, Sandra Delgado, Alexandra Dodu, Eduardo M. Bruch, , , , et al.
Communications Biology, Volume 4, pp 1-8; doi:10.1038/s42003-021-02222-x

Glutamate dehydrogenases (GDHs) are widespread metabolic enzymes that play key roles in nitrogen homeostasis. Large glutamate dehydrogenases composed of 180 kDa subunits (L-GDHs180) contain long N- and C-terminal segments flanking the catalytic core. Despite the relevance of L-GDHs180 in bacterial physiology, the lack of structural data for these enzymes has limited the progress of functional studies. Here we show that the mycobacterial L-GDH180 (mL-GDH180) adopts a quaternary structure that is radically different from that of related low molecular weight enzymes. Intersubunit contacts in mL-GDH180 involve a C-terminal domain that we propose as a new fold and a flexible N-terminal segment comprising ACT-like and PAS-type domains that could act as metabolic sensors for allosteric regulation. These findings uncover unique aspects of the structure-function relationship in the subfamily of L-GDHs.
Nicholas J. MacKnight, Kathryn Cobleigh, Danielle Lasseigne, Andia Chaves-Fonnegra, Alexandra Gutting, Bradford Dimos, Jendahye Antoine, Lauren Fuess, Contessa Ricci, Caleb Butler, et al.
Communications Biology, Volume 4, pp 1-11; doi:10.1038/s42003-021-02163-5

Disease outbreaks have caused significant declines of keystone coral species. While forecasting disease outbreaks based on environmental factors has progressed, we still lack a comparative understanding of susceptibility among coral species that would help predict disease impacts on coral communities. The present study compared the phenotypic and microbial responses of seven Caribbean coral species with diverse life-history strategies after exposure to white plague disease. Disease incidence and lesion progression rates were evaluated over a seven-day exposure. Coral microbiomes were sampled after lesion appearance or at the end of the experiment if no disease signs appeared. A spectrum of disease susceptibility was observed among the coral species that corresponded to microbial dysbiosis. This dysbiosis promotes greater disease susceptiblity in coral perhaps through different tolerant thresholds for change in the microbiome. The different disease susceptibility can affect coral’s ecological function and ultimately shape reef ecosystems.
You-Long Cao, Yan-Long Li, Yun-Fang Fan, Zhen Li, Kouki Yoshida, Jie-Yu Wang, Xiao-Kai Ma, Ning Wang, , , et al.
Communications Biology, Volume 4, pp 1-13; doi:10.1038/s42003-021-02152-8

Wolfberry Lycium, an economically important genus of the Solanaceae family, contains approximately 80 species and shows a fragmented distribution pattern among the Northern and Southern Hemispheres. Although several herbaceous species of Solanaceae have been subjected to genome sequencing, thus far, no genome sequences of woody representatives have been available. Here, we sequenced the genomes of 13 perennial woody species of Lycium, with a focus on Lycium barbarum. Integration with other genomes provides clear evidence supporting a whole-genome triplication (WGT) event shared by all hitherto sequenced solanaceous plants, which occurred shortly after the divergence of Solanaceae and Convolvulaceae. We identified new gene families and gene family expansions and contractions that first appeared in Solanaceae. Based on the identification of self-incompatibility related-gene families, we inferred that hybridization hotspots are enriched for genes that might be functioning in gametophytic self-incompatibility pathways in wolfberry. Extremely low expression of LOCULE NUBER (LC) and COLORLESS NON-RIPENING (CNR) orthologous genes during Lycium fruit development and ripening processes suggests functional diversification of these two genes between Lycium and tomato. The existence of additional flowering locus C-like MADS-box genes might correlate with the perennial flowering cycle of Lycium. Differential gene expression involved in the lignin biosynthetic pathway between Lycium and tomato likely illustrates woody and herbaceous differentiation. We also provide evidence that Lycium migrated from Africa into Asia, and subsequently from Asia into North America. Our results provide functional insights into Solanaceae origins, evolution and diversification.
Aliesha Griffin, Colleen Carpenter, Jing Liu, Rosalia Paterno, Brian Grone, Kyla Hamling, Maia Moog, Matthew T. Dinday, Francisco Figueroa, Mana Anvar, et al.
Communications Biology, Volume 4, pp 1-13; doi:10.1038/s42003-021-02221-y

Genetic engineering techniques have contributed to the now widespread use of zebrafish to investigate gene function, but zebrafish-based human disease studies, and particularly for neurological disorders, are limited. Here we used CRISPR-Cas9 to generate 40 single-gene mutant zebrafish lines representing catastrophic childhood epilepsies. We evaluated larval phenotypes using electrophysiological, behavioral, neuro-anatomical, survival and pharmacological assays. Local field potential recordings (LFP) were used to screen ∼3300 larvae. Phenotypes with unprovoked electrographic seizure activity (i.e., epilepsy) were identified in zebrafish lines for 8 genes; ARX, EEF1A, GABRB3, GRIN1, PNPO, SCN1A, STRADA and STXBP1. We also created an open-source database containing sequencing information, survival curves, behavioral profiles and representative electrophysiology data. We offer all zebrafish lines as a resource to the neuroscience community and envision them as a starting point for further functional analysis and/or identification of new therapies.
Hong Wang, Aiping Duan, Jing Zhang, Qi Wang, Yuexian Xing, , Zhihong Liu,
Communications Biology, Volume 4, pp 1-10; doi:10.1038/s42003-021-02209-8

Elucidating transcription mediated by the glucocorticoid receptor (GR) is crucial for understanding the role of glucocorticoids (GCs) in the treatment of diseases. Podocyte is a useful model for studying GR regulation because GCs are the primary medication for podocytopathy. In this study, we integrated data from transcriptome, transcription factor binding, histone modification, and genome topology. Our data reveals that the GR binds and activates selective regulatory elements in podocyte. The 3D interactome captured by HiChIP facilitates the identification of remote targets of GR. We found that GR in podocyte is enriched at transcriptional interaction hubs and super-enhancers. We further demonstrate that the target gene of the top GR-associated super-enhancer is indispensable to the effective functioning of GC in podocyte. Our findings provided insights into the mechanisms underlying the protective effect of GCs on podocyte, and demonstrate the importance of considering transcriptional interactions in order to fine-map regulatory networks of GR.
Christophe Pagnout, Angelina Razafitianamaharavo, Bénédicte Sohm, Céline Caillet, , Eva Delatour, , ,
Communications Biology, Volume 4, pp 1-15; doi:10.1038/s42003-021-02213-y

Toxicity mechanisms of metal oxide nanoparticles towards bacteria and underlying roles of membrane composition are still debated. Herein, the response of lipopolysaccharide-truncated Escherichia coli K12 mutants to TiO2 nanoparticles (TiO2NPs, exposure in dark) is addressed at the molecular, single cell, and population levels by transcriptomics, fluorescence assays, cell nanomechanics and electrohydrodynamics. We show that outer core-free lipopolysaccharides featuring intact inner core increase cell sensitivity to TiO2NPs. TiO2NPs operate as membrane strippers, which induce osmotic stress, inactivate cell osmoregulation and initiate lipid peroxidation, which ultimately leads to genesis of membrane vesicles. In itself, truncation of lipopolysaccharide inner core triggers membrane permeabilization/depolarization, lipid peroxidation and hypervesiculation. In turn, it favors the regulation of TiO2NP-mediated changes in cell Turgor stress and leads to efficient vesicle-facilitated release of damaged membrane components. Remarkably, vesicles further act as electrostatic baits for TiO2NPs, thereby mitigating TiO2NPs toxicity. Altogether, we highlight antagonistic lipopolysaccharide-dependent bacterial responses to nanoparticles and we show that the destabilized membrane can generate unexpected resistance phenotype.
Communications Biology, Volume 4, pp 1-11; doi:10.1038/s42003-021-02231-w

Given the global impact and severity of COVID-19, there is a pressing need for a better understanding of the SARS-CoV-2 genome and mutations. Multi-strain sequence alignments of coronaviruses (CoV) provide important information for interpreting the genome and its variation. We apply a comparative genomics method, ConsHMM, to the multi-strain alignments of CoV to annotate every base of the SARS-CoV-2 genome with conservation states based on sequence alignment patterns among CoV. The learned conservation states show distinct enrichment patterns for genes, protein domains, and other regions of interest. Certain states are strongly enriched or depleted of SARS-CoV-2 mutations, which can be used to predict potentially consequential mutations. We expect the conservation states to be a resource for interpreting the SARS-CoV-2 genome and mutations.
Mohammed Hag-Ali, Abdul Salam AlShamsi, Linda Boeijen, Yasser Mahmmod, Rashid Manzoor, Harry Rutten, Marshal M. Mweu, Mohamed El-Tholoth, Abdullatif Alteraifi AlShamsi
Communications Biology, Volume 4, pp 1-7; doi:10.1038/s42003-021-02232-9

In January 2020, the coronavirus disease was declared, by the World Health Organization as a global public health emergency. Recommendations from the WHO COVID Emergency Committee continue to support strengthening COVID surveillance systems, including timely access to effective diagnostics. Questions were raised about the validity of considering the RT-PCR as the gold standard in COVID-19 diagnosis. It has been suggested that a variety of methods should be used to evaluate advocated tests. Dogs had been successfully trained and employed to detect diseases in humans. Here we show that upon training explosives detection dogs on sniffing COVID-19 odor in patients’ sweat, those dogs were able to successfully screen out 3249 individuals who tested negative for the SARS-CoV-2, from a cohort of 3290 individuals. Additionally, using Bayesian analysis, the sensitivity of the K9 test was found to be superior to the RT-PCR test performed on nasal swabs from a cohort of 3134 persons. Given its high sensitivity, short turn-around-time, low cost, less invasiveness, and ease of application, the detection dogs test lends itself as a better alternative to the RT-PCR in screening for SARS-CoV-2 in asymptomatic individuals.
Walter Rayford, , Jordan Alger, Mohammed Alshalalfa, Mohsen Ahmed, Irtaza Khan, , Yang Liu, Elai Davicioni, Daniel E. Spratt, et al.
Communications Biology, Volume 4, pp 1-9; doi:10.1038/s42003-021-02140-y

Racial disparities in prostate cancer have not been well characterized on a genomic level. Here we show the results of a multi-institutional retrospective analysis of 1,152 patients (596 African-American men (AAM) and 556 European-American men (EAM)) who underwent radical prostatectomy. Comparative analyses between the race groups were conducted at the clinical, genomic, pathway, molecular subtype, and prognostic levels. The EAM group had increased ERG (P < 0.001) and ETS (P = 0.02) expression, decreased SPINK1 expression (P < 0.001), and basal-like (P < 0.001) molecular subtypes. After adjusting for confounders, the AAM group was associated with higher expression of CRYBB2, GSTM3, and inflammation genes (IL33, IFNG, CCL4, CD3, ICOSLG), and lower expression of mismatch repair genes (MSH2, MSH6) (p < 0.001 for all). At the pathway level, the AAM group had higher expression of genes sets related to the immune response, apoptosis, hypoxia, and reactive oxygen species. EAM group was associated with higher levels of fatty acid metabolism, DNA repair, and WNT/beta-catenin signaling. Based on cell lines data, AAM were predicted to have higher potential response to DNA damage. In conclusion, biological characteristics of prostate tumor were substantially different in AAM when compared to EAM.
Back to Top Top