Biochemical Journal

Journal Information
ISSN / EISSN : 0264-6021 / 1470-8728
Published by: Portland Press Ltd. (10.1042)
Total articles ≅ 59,115
Current Coverage
SCOPUS
MEDLINE
PUBMED
MEDICUS
SCIE
Archived in
EBSCO
SHERPA/ROMEO
Filter:

Latest articles in this journal

Published: 23 September 2022
Biochemical Journal, Volume 479, pp 1917-1940; https://doi.org/10.1042/bcj20220388

Abstract:
As first demonstrated in budding yeast (Saccharomyces cerevisiae), all eukaryotic cells contain two, distinct multi-component protein kinase complexes that each harbor the TOR (Target Of Rapamycin) polypeptide as the catalytic subunit. These ensembles, dubbed TORC1 and TORC2, function as universal, centrally important sensors, integrators, and controllers of eukaryotic cell growth and homeostasis. TORC1, activated on the cytosolic surface of the lysosome (or, in yeast, on the cytosolic surface of the vacuole), has emerged as a primary nutrient sensor that promotes cellular biosynthesis and suppresses autophagy. TORC2, located primarily at the plasma membrane, plays a major role in maintaining the proper levels and bilayer distribution of all plasma membrane components (sphingolipids, glycerophospholipids, sterols, and integral membrane proteins). This article surveys what we have learned about signaling via the TORC2 complex, largely through studies conducted in S. cerevisiae. In this yeast, conditions that challenge plasma membrane integrity can, depending on the nature of the stress, stimulate or inhibit TORC2, resulting in, respectively, up-regulation or down-regulation of the phosphorylation and thus the activity of its essential downstream effector the AGC family protein kinase Ypk1. Through the ensuing effect on the efficiency with which Ypk1 phosphorylates multiple substrates that control diverse processes, membrane homeostasis is maintained. Thus, the major focus here is on TORC2, Ypk1, and the multifarious targets of Ypk1 and how the functions of these substrates are regulated by their Ypk1-mediated phosphorylation, with emphasis on recent advances in our understanding of these processes.
Sajid Irshad, Saeed Ahmad, Shafi Ullah Khan, Mohsin Abbas Khan, , Huma Rao, Umair Khurshid, Aftab Ahmed, Nadeem Shahzad, Hamad M.Al-Kahtani, et al.
Published: 16 September 2022
Abstract:
In the present work we reported the synthesis of Schiff bases from 4-phenoxy-5-sulfamoylbenzoic acid motif. The reaction was carried out by substitution of different aldehyde and ketones at sulfamoyl group of sulfamoylbenzoic acid. The generated substituted products (4a-4i) possessed potent structure activity relationship and exhibited drug like properties. The structures of synthesized compounds were characterized on the basis of FT-IR, 1H NMR, 13C NMR and mass spectroscopic data. The effects of synthesized products were investigated on urease enzyme through anti-urease enzyme inhibition assay (Weather burn method). These compounds were further evaluated for anti-bacterial potential. The Rationale behind the assessment of antibacterial activity was to investigate the synthesized compound's dual mode action against urease and virulent bacterial strains in order to develop a lead candidate for the treatment of GIT diseases such as gastric and peptic ulcers, as well as hepatic encephalopathy. The synthesized compounds have outstanding anti-urease and anti-bacterial action, as is evident from in vitro and in silico studies. As a result, these compounds (3-(butylamino)-4-phenoxy-5-sulfamoylbenzoic acid; 4a-4i) might be explored further as a potential lead for the development of potent inhibitors in the future.
Gang Lin, Wenyi Shi, Ningxia Zhang, Yi-Tsang Lee, ,
Published: 16 September 2022
Biochemical Journal, Volume 479, pp 1857-1875; https://doi.org/10.1042/bcj20220382

Abstract:
Membrane contact sites (MCSs) mediate crucial physiological processes in eukaryotic cells, including ion signaling, lipid metabolism, and autophagy. Dysregulation of MCSs is closely related to various diseases, such as type 2 diabetes mellitus (T2DM), neurodegenerative diseases, and cancers. Visualization, proteomic mapping and manipulation of MCSs may help the dissection of the physiology and pathology MCSs. Recent technical advances have enabled better understanding of the dynamics and functions of MCSs. Here we present a summary of currently known functions of MCSs, with a focus on optical approaches to visualize and manipulate MCSs, as well as proteomic mapping within MCSs.
Tom Snelling, Natalia Shpiro, Robert Gourlay, Frederic Lamoliatte,
Published: 13 September 2022
Abstract:
ADP-heptose activates the protein kinase ALPK1 triggering TIFA phosphorylation at Thr9, the recruitment of TRAF6 and the subsequent production of inflammatory mediators. Here, we demonstrate that ADP-heptose also stimulates the formation of Lys63- and Met1-linked ubiquitin chains to activate the TAK1 and canonical IKK complexes, respectively. We further show that the E3 ligases TRAF6 and c-IAP1 operate redundantly to generate the Lys63-linked ubiquitin chains required for pathway activation, which we demonstrate are attached to TRAF6, TRAF2 and c-IAP1, and that c-IAP1 is recruited to TIFA by TRAF2. ADP-heptose also induces activation of the kinase TBK1 by a TAK1-independent mechanism, which requires TRAF2 and TRAF6. We establish that ALPK1 phosphorylates TIFA directly at Thr177 as well as Thr9 in vitro. Thr177 is located within the TRAF6-binding motif and its mutation to Asp prevents TRAF6 but not TRAF2 binding, indicating a role in restricting ADP-heptose signalling. We conclude that ADP-heptose signalling is controlled by the combined actions of TRAF2/c-IAP1 and TRAF6.
Mei Nakagawa, Takayuki Obita,
Published: 13 September 2022
Abstract:
Destabilization of human transthyretin leads to its aggregation into amyloid fibrils, which causes a rare, progressive and fatal systemic disorder called ATTR amyloidosis. By contrast, murine transthyretin is known to be very stable and therefore does not aggregate into amyloid fibrils in vivo or in vitro. We examined the hydrophobic residues responsible for the high-stability and low-aggregation properties of murine transthyretin using site-directed mutagenesis. Urea-induced unfolding and thioflavin T fluorescence aggregation assay revealed that Leu73 of murine transthyretin largely contributes to its high stability and low aggregation properties: the I73L mutation stabilized human transthyretin, while the L73I mutation destabilized murine transthyretin. In addition, the I26V/I73L mutation stabilized the amyloidogenic V30M mutant of human transthyretin to the same degree as the suppressor mutation T119M, which protects transthyretin against amyloid fibril aggregation. The I73L mutation resulted in no significant differences in the overall structure of the transthyretin tetramer or the contacts of side-chains in the hydrophobic core of the monomer. We also found that Leu73 of murine transthyretin is conserved in many mammals, while Ile73 of human transthyretin is conserved in monkeys and cats. These studies will provide new insights into the stability and aggregation properties of transthyretin from various mammals.
Aaron G. Whitt, Shuhan Meng, Jiu-Zhen Jin, Lindsey R. Conroy, Lindsey A. McNally, Joseph A. Burlison, Bradford G Hill, Brian F. Clem, Carl White,
Published: 12 September 2022
Abstract:
The opportunistic bacterium Pseudomonas aeruginosa secretes the quorum-sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone (C12) to coordinate gene expression profiles favorable for infection. Recent studies have demonstrated that high concentrations of C12 impair many aspects of host cell physiology, including mitochondrial function and cell viability. The cytotoxic effects of C12 are mediated by the lactonase enzyme, Paraoxonase 2 (PON2), which hydrolyzes C12 to a reactive metabolite. However, the influence of C12 on host cell physiology at concentrations observed in patients infected with P. aeruginosa is largely unknown. Since the primary site of P. aeruginosa infections is the mammalian airway, we sought to investigate how PON2 modulates the effects of C12 at subtoxic concentrations using immortalized murine tracheal epithelial cells (TECs) isolated from wild type (WT) or PON2-knockout (PON2-KO) mice. Our data reveal that C12 at subtoxic concentrations disrupts mitochondrial bioenergetics to hinder cellular proliferation in TECs expressing PON2. Subtoxic concentrations of C12 disrupt normal mitochondrial network morphology in a PON2-dependent manner without affecting mitochondrial membrane potential. In contrast, higher concentrations of C12 depolarize mitochondrial membrane potential and subsequently trigger caspase signaling and apoptotic cell death. These findings demonstrate that different concentrations of C12 impact distinct aspects of host airway epithelial cell physiology through PON2 activity in mitochondria.
Peter A. Galie, Penelope C. Georges,
Published: 12 September 2022
Biochemical Journal, Volume 479, pp 1825-1842; https://doi.org/10.1042/bcj20210806

Abstract:
Cell stiffness is an important characteristic of cells and their response to external stimuli. In this review, we survey methods used to measure cell stiffness, summarize stimuli that alter cell stiffness, and discuss signaling pathways and mechanisms that control cell stiffness. Several pathological states are characterized by changes in cell stiffness, suggesting this property can serve as a potential diagnostic marker or therapeutic target. Therefore, we consider the effect of cell stiffness on signaling and growth processes required for homeostasis and dysfunction in healthy and pathological states. Specifically, the composition and structure of the cell membrane and cytoskeleton are major determinants of cell stiffness, and studies have identified signaling pathways that affect cytoskeletal dynamics both directly and by altered gene expression. We present the results of studies interrogating the effects of biophysical and biochemical stimuli on the cytoskeleton and other cellular components and how these factors determine the stiffness of both individual cells and multicellular structures. Overall, these studies represent an intersection of the fields of polymer physics, protein biochemistry, and mechanics, and identify specific mechanisms involved in mediating cell stiffness that can serve as therapeutic targets.
Hee Ryung Kim, Donghoon Ahn, Jae Beom Jo,
Published: 12 September 2022
Biochemical Journal, Volume 479, pp 1843-1855; https://doi.org/10.1042/bcj20220163

Abstract:
Heterotrimeric guanine nucleotide-binding proteins (G proteins) are composed of α, β, and γ subunits, and Gα has a GDP/GTP-binding pocket. When a guanine nucleotide exchange factor (GEF) interacts with Gα, GDP is released, and GTP interacts to Gα. The GTP-bound activated Gα dissociates from GEF and Gβγ, mediating the induction of various intracellular signaling pathways. Depending on the sequence similarity and cellular function, Gα subunits are subcategorized into four subfamilies: Gαi/o, Gαs, Gαq/11, and Gα12/13. Although the Gαi/o subtype family proteins, Gαi3 and GαoA, share similar sequences and functions, they differ in their GDP/GTP turnover profiles, with GαoA possessing faster rates than Gαi3. The structural factors responsible for these differences remain unknown. In this study, we employed hydrogen/deuterium exchange mass spectrometry and mutational studies to investigate the factors responsible for these functional differences. The Gα subunit consists of a Ras-like domain (RD) and an α-helical domain (AHD). The RD has GTPase activity and receptor-binding and effector-binding regions; however, the function of the AHD has not yet been extensively studied. In this study, the chimeric construct containing the RD of Gαi3 and the AHD of GαoA showed a GDP/GTP turnover profile similar to that of GαoA, suggesting that the AHD is the major regulator of the GDP/GTP turnover profile. Additionally, site-directed mutagenesis revealed the importance of the N-terminal part of αA and αA/αB loops in the AHD for the GDP/GTP exchange. These results suggest that the AHD regulates the nucleotide exchange rate within the Gα subfamily.
Hannah R Warren, Sarah Ross, Paul D Smith, Judy M Coulson,
Published: 6 September 2022
Abstract:
Approximately 15% of all cancer patients harbor mutated KRAS. Direct inhibitors of KRAS have now been generated and are beginning to make progress through clinical trials. These include a suite of inhibitors targeting the KRASG12C mutation commonly found in lung cancer. We investigated emergent resistance to representative examples of different classes of Ras targeted therapies. They all exhibited rapid reactivation of Ras signaling within days of exposure and adaptive responses continued to change over long-term treatment schedules. Whilst the gene signatures were distinct for each inhibitor, they commonly involved upregulation of upstream nodes promoting mutant and wild type Ras activation. Experiments to reverse resistance unfortunately revealed frequent desensitization to members of a panel of anti-cancer therapeutics, suggesting that salvage approaches are unlikely to be feasible. Instead, we identified triple inhibitor combinations that resulted in more durable responses to KRAS inhibitors and that may benefit from further pre-clinical evaluation.
Samuel M. Duncan,
Published: 6 September 2022
Biochemical Journal, Volume 479, pp 1743-1758; https://doi.org/10.1042/bcj20210778

Abstract:
Eukaryotic protein glycosylation is mediated by glycosyl- and oligosaccharyl-transferases. Here, we describe how African trypanosomes exhibit both evolutionary conservation and significant divergence compared with other eukaryotes in how they synthesise their glycoproteins. The kinetoplastid parasites have conserved components of the dolichol-cycle and oligosaccharyltransferases (OSTs) of protein N-glycosylation, and of glycosylphosphatidylinositol (GPI) anchor biosynthesis and transfer to protein. However, some components are missing, and they process and decorate their N-glycans and GPI anchors in unique ways. To do so, they appear to have evolved a distinct and functionally flexible glycosyltransferases (GT) family, the GT67 family, from an ancestral eukaryotic β3GT gene. The expansion and/or loss of GT67 genes appears to be dependent on parasite biology. Some appear to correlate with the obligate passage of parasites through an insect vector, suggesting they were acquired through GT67 gene expansion to assist insect vector (tsetse fly) colonisation. Others appear to have been lost in species that subsequently adopted contaminative transmission. We also highlight the recent discovery of a novel and essential GT11 family of kinetoplastid parasite fucosyltransferases that are uniquely localised to the mitochondria of Trypanosoma brucei and Leishmania major. The origins of these kinetoplastid FUT1 genes, and additional putative mitochondrial GT genes, are discussed.
Back to Top Top