Foods and Raw Materials

Journal Information
ISSN / EISSN : 2308-4057 / 2310-9599
Published by: Kemerovo State University (10.21603)
Total articles ≅ 403
Current Coverage
Archived in

Latest articles in this journal

Nikita Fedortsov, Elena Budkevich, Ivan Evdokimov, Svetlana Ryabtseva, Roman Budkevich
Introduction. Gallic acid is a biologically active natural compound with strong antioxidant properties. Gallic acid is highly soluble and stable. It is known to increase the thermal stability of protein. However, its bioavailability is low, but interaction with proteins can solve this problem. Bovine serum albumin can bind various ligands, including polyphenols. The resulting complex of gallic acid and bovine serum albumin can become a promising functional food additive. Study objects and methods. This research featured in silico molecular modeling of gallic acid and bovine serum albumin using the HyperChem program. The methods of infrared spectrometry, potentiometry, and sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) made it possible to describe the physicochemical profile of the complex. Results and discussion. The molecular modeling confirmed that hydrophobic interactions were responsible for the chemical bond between gallic acid and bovine serum albumin. The SDS-PAGE test showed that the protein molecule remained intact. The reducing properties of the complex grew as the concentration of gallic acid increased. At 100 mg/L of gallic acid, the reducing properties were 7.8 ± 1.3 mg/L equivalent of gallic acid. At 200 and 300 mg/L, the values reached 15.90 ± 2.65 and 23.30 ± 5.05 mg/L, respectively. The IR spectrometry revealed a significant difference between the samples with different concentrations of gallic acid. Conclusion. The research managed to predict the properties of the complex of bovine serum albumin and gallic acid during its formation. The resulting complex had the highest reducing properties at 0.69 g of bovine serum albumin and 300 mg of gallic acid. The obtained parameters can be used in the food industry to develop new food additives.
Aleksandr Marynich, Batyrkhan Abilov, Vladimir Semenov, Novruz Dzhafarov, Valery Kulintsev, Igor Serdyukov
Introduction. Today’s feed market offers a variety of new products of plant and animal origin that increases the productivity of young sheep. Using feed supplements can help farmers to fully realize the genetic potential of wool-and-meat genotype sheep. Study objects and methods. We studied the effect of a whole milk replacer (skimmed powdered milk) and an ORGANIC high-protein feed supplement on the growth of young sheep and the quality of their meat. In particular, we determined the effect of starter feeds on the biochemical and morphological parameters of sheep blood at the Vtoraya Pyatiletka Breeding Farm, Stavropol Krai. Results and discussion. Substituting starter feeds with a whole milk replacer and an ORGANIC supplement for the standard feed in the diet of sheep aged 0–4 months increased metabolic energy (by 12.5%), crude protein (by 22.4 and 25.5%, respectively), lysine (by 24.8 and 21.4%, respectively), and methionine + cystine (by 31.0%). The starter feeds also led to higher live weight (by 29.6 and 33.7% (P ≤ 0.001)), absolute and average daily gain (by 24.6 and 29.1% (P ≤ 0.001)), slaughter weight (by 36.5 and 42.1% (P ≤ 0.001)), slaughter yield (by 2.50 and 2.96 abs.% (P ≤ 0.05)), and meat marbling (by 3.6 and 11.7%). The number of muscle fibers increased by 2.1 and 3.3%, respectively. Additional profits rose from 1761.5 to 2091.5 rubles per head and the product profitability reached 50.5–57.9%. Conclusion. The starter feeds containing a milk replacer and an ORGANIC feed supplement proved effective for sheep aged of 0–4 months in the suckling period, ensuring live weight of 39–40 kg and improving meat quality and productivity.
Sergey Beketov, Anatoly Kaledin, Stepan Senator, Vladimir Upelniek, Sergey Kuznetsov, Yury Stolpovsky
Introduction. A herd of zeboid cattle was created by the Snegiri Scientific and Experimental Farm (Moscow region, Russia) as a result of long-term selection and crossbreeding zebu (Bos indicus L.) with cattle (Bos taurus L.). These hybrid cows have good physiological parameters, high resistance to diseases, and a significant adaptive potential. The quality of milk produced by zebu cows at different lactation and milking times has not been studied as well as their milking capacity. Therefore, we aimed to assess the variability of specific physicochemical indicators of milk produced by Snegiri’s zeboid dairy herd. Study objects and methods. The milk of 193 zeboid cows (6–12% of zebu blood) from the Snegiri Farm was analyzed by standard methods for quality indicators such as fat, nonfat milk solids, density, bound water, freezing point, protein, and lactose. Then, we determined how these indicators changed depending on the lactation number and the time of milking (morning/evening). Statistical analysis was applied to process the data. Results and discussion. Such indicators as nonfat milk solids, density, bound water, freezing point, protein, and lactose of zeboid cow milk were consistent with the normal indicators for raw cow’s milk. Only its fat content (4.39%) exceeded the norm. We found no correlation between the quality of milk and the number of lactations. However, the evening milk was more concentrated, with a significant increase in nonfat milk solids and density, as well as with a lower freezing point. Conclusion. Zeboid cows, which can be bred in suboptimal conditions, produce milk suitable for dairy products since it has a high fat content regardless of lactation and milking time.
Artem Samoylov, Natal’Ya Suraeva, Mariya Zaytseva, Andrey Petrov
Introduction. Apple juice owes its beneficial properties to various biologically active compounds, e.g. antioxidants. Therefore, food science needs effective methods that would cover all the mechanisms of their effect on human metabolism. However, fruit juice production raises certain safety issues that are associated not only with production risks, but also with some natural components in the raw material. The Allium cepa test seems to be an effective solution to the problem. This plant bioassay has a good correlation tested on mammalian cell cultures. Study objects and methods. Onion roots (A. cepa) were treated with aqueous solutions of juices and sorbic acid to assess their antioxidant profile. The toxic effects on root tissues were described according to biomass growth, malondialdehyde (MDA) concentration, and proliferative and cytogenetic disorders. Results and discussion. The study revealed the optimal conditions for the A. cepa assay of the antioxidant properties of apple juice. The antioxidant activity was at its highest when the juice was diluted with water 1:9 and the onion roots were treated with sorbic acid. The lipid oxidation of the A. cepa roots decreased by 43%. A comparative analysis of three different juice brands showed that the difference in their antioxidant profiles was ≤ 3%. As for toxic side effects, the chromosome aberrations increased by six times in all samples. Conclusion. The research offers a new in vivo method for determining the antioxidant profile of apple juice. Three juice brands proved to have irreversible cytotoxic and genotoxic effects.
Dmitrii Khrundin, Vsevolod Ponomarev, Eduard Yunusov
Introduction. We studied the use of fermented oat milk to produce sauce and evaluated its properties. The research was motivated by the current demand for so called “plant milk” commonly perceived as an alternative to cow’s milk. Study objects and methods. The experimental samples were produced from oats-based drinks (1.5 and 3.2% fat) fermented with starter cultures of lactic acid microorganisms following the guidelines for yoghurt production. Apple pectin was used as a thickener. Rheological studies were performed using an RM-1 rotational viscometer and a CT-2 texture analyzer according to the standard methods. Sensory evaluation was based on a scoring scale. Physicochemical parameters were determined according to generally accepted methods. Results and discussion. Oat milk was fermented to produce a sauce base. Acid accumulation increased throughout fermentation up to 135–137°T. Apple pectin (3%) was added to stabilize the structure and ensure the desired consistency. Higher concentrations of pectin increased the hardness and adhesive strength of the samples from both 1.5 and 3.2% oat milk. The 1.5% sauce scored highest in the sensory evaluation. Its physicochemical indicators met the standard requirements for related fermented milk products. We found the best consistency indicators at a pectin concentration of 3%. Conclusion. The new fermented sauce based on low fat oat milk (1.5% fat) had high consumer appeal as well as physicochemical, sensory, and rheological characteristics. The sauce can be used by people with lactose intolerance and vegetarians.
Romina B. Parada, Emilio Marguet, Carmen A. Campos, Marisol Vallejo
Introduction. Brassica L. vegetables are rich in fiber, minerals, and bioactive compounds. Lactic fermentation can improve their nutritional value. The goal of this study was to evaluate phytase, calcium, phytic acid, total phenolic content, and antioxidants during spontaneous fermentation of white cabbage, red cabbage, and Chinese cabbage. Study objects and methods. The research featured samples of water extract, methanol extract, and brine. The procedure involved monitoring lactic bacteria and pH during cabbage fermentation. Diphenyl-1-picrylhydrazyl radical (DPPH) scavenging assay and cupric reducing antioxidant capacity (CUPRAC) assay were used to measure the antioxidant activity and Folin-Ciocalteau method to determine total phenolic content in the water and methanol extracts. In the brine samples, we studied calcium, phytic acid, and phytase activity. Results and discussion. The samples of white and red cabbage displayed the highest phytase activity on days 5–10 and had a maximal decrease of phytic acid and increase of calcium concentration, while in Chinese cabbage these processes occurred gradually throughout the fermentation. The total phenolic content in the brine and extracts was very similar for all the cultivars throughout the fermentation process. A continuous release from the solid phase to brine could be observed during the first ten days of fermentation. DPPH and CUPRAC assays revealed a similar phenomenon for the total phenolic content. The antioxidant capacity decreased in the water and methanol extracts and increased in the brine. At the end of fermentation, the red cabbage samples demonstrated a significant increase in the total phenolic content and total antioxidant activity, which was less prominent in the Chinese cabbage. The samples of white cabbage, on the contrary, showed a decrease in these parameters. Conclusion. Fermentation made it possible to increase the concentration of free calcium in white, red, and Chinese cabbages, as well as improve the antioxidant capacity of red and Chinese cabbages.
Alvine Sandrine Ndinchout, Debapriya Chattopadhyay, Nyegue Maximilienne Ascension, Narpinder Singh, Moundipa Fewou Paul
Introduction. Due to the increasing demand for natural and functional products, scientists together with industries are conducting research to improve the nutritional quality of food. One of the ways to enhance the functionality of food is to add fruits or vegetables to their formulations. In this study, we attempted to develop muffins fortified with Dacryodes macrophylla L. fruit as a value-added ingredient. Study objects and methods. Our study objects included D. macrophylla L. extract and six muffins: three eggless samples and three egg-containing samples. Each group included control and experimental samples. The experimental samples containing 0.5 and 1% of D. macrophylla L. extract instead of wheat flour were evaluated for muffin-making properties. All the samples were analyzed for their physicochemical, antioxidant, and sensory properties, as well as rheological parameters. Results and discussion. We found that D. macrophylla L. reduced the water activity, color values (L*, a*, b*), and firmness of muffins. It had no significant effect on baking loss, height, moisture, cohesiveness, springiness, gumminess or chewiness, but tended to decrease the specific volume of muffins. However, D. macrophylla L. fruit increased the specific gravity, improved rheology properties, and tended to increase adhesiveness and mineral contents. Na and K varied from 5.93 to 7.75 and 2.88 to 7.35 mg/g, respectively. Furthermore, D. macrophylla L. fruit significantly improved the muffins’ antioxidant activities. According to sensory evaluation, the muffins made with egg solids and 0.5% of D. macrophylla L. fruit had higher sensory scores than the other experimental samples. Conclusion. D. macrophylla L. fruit is a good potential ingredient for enriching muffins and developing new functional bakery products. However, further research is needed to improve the color reproduction of muffins and determine the optimal concentration of D. macrophylla L.
Liubov Rimareva, Elena Serba, Marina Overchenko, Nataliya Shelekhova, Nadezhda Ignatova, Anzhelika Pavlova
Introduction. Recent studies have shown the benefits of phytolytic enzymes to prepare grain wort in ethanol production. However, there is a lack of data on the effect of phytases and their amount on the conversion of grain polymers, the ionic composition of wort and mash, and the efficiency of yeast generation and ethanol fermentation. Study objects and methods. Wheat and corn wort samples were treated with a complex of hydrolases, including phytases. Capillary electrophoresis determined the ionic composition of wort and mash. Gas chromatography measured the content of volatile metabolites. Results and discussion. The key enzymes were phytases and proteases. They improved the conversion of grain polymers and stimulated the growth and metabolism of yeast cells. Their synergism enriched the wort with assimilable nitrogen, phosphorus, and other valuable minerals. In addition, it intensified the growth of the Saccharomyces cerevisiae yeast, increased the rate of carbohydrate consumption, and reduced the formation of side metabolites 1.7–1.9 times, mainly due to higher and aromatic alcohols. The concentration of phosphates remained practically unchanged during the fermentation of grain wort treated with phytases. However, by the end of fermentation, it was 2.4–5.1 times higher than in the mash samples without phytolytic treatment. Finally, we identified a complex of enzymes and optimal amounts of phytases that have a stimulating effect on ethanol fermentation. Conclusion. Phytases, whether used individually or together with proteases, enriched grain wort with soluble macro- and microelements, improved yeast metabolism, directed ethanol synthesis, and decreased the formation of fermentation by-products.
Victor Buryndin, Artyem Artyemov, Andrei Savinovskih, Pavel Krivonogov, Anna Krivonogova
Introduction. Agriculture produces a lot of plant and food waste that is highly biodegradable. In order to recycle this waste and use it in the production of new materials, we need to find effective ways to increase their resistance to biodegradation. We aimed to study the biostability of binder-free wood and plant plastics, as well as to find an optimal method of their antiseptic protection. Study objects and methods. Our objects of study were binder-free plastics based on sawdust, wheat and millet husks. To determine their biostability, we exposed them in active soil for 21 days and analyzed their physical and mechanical properties. Also, we examined the effects of several methods of antiseptic treatment on the samples’ strength, water resistance, and biodegradation. Results and discussion. All the wood- and plant-based samples showed low biostability. Exposure in active soil caused significant morphological and structural changes, as well as impaired the samples’ physical and mechanical properties, especially those of the plant-based plastics. Their resistance to biodegradation was significantly determined by the type of filler or antiseptic, as well as by the method of antiseptic administration. Whether added to the press mixture or applied to the surface, the antiseptics changed the samples’ physical and mechanical properties. Among the antiseptics used, copper sulfate showed the best effect when introduced directly into the sawdust press mixture. It ensured the lowest decrease in flexural strength, but increased hardness, water absorption, and swelling. The wheat- and millet-based plastics protected with copper sulfate showed an increase in strength indicators, but lower water resistance. Conclusion. The antiseptic protection of binder-free wood and plant plastics affects a number of their physical and mechanical properties and therefore should take into account the expected conditions for their performance.
Alexander Pogorelov, Larisa Ipatova, Maria Pogorelova, Alexander Kuznetsov, Oleg Suvorov
Introduction. Electrochemical activation of water controls the physicochemical parameters of aquatic food environment without any reagents. Electrolyzed water affects the properties of macronutrient solutions. The present research studied the effect of anodic and cathodic fractions of electrochemically activated water on protein molecules and their interaction patterns. Study objects and methods. The study featured bovine serum albumin and its properties in electrochemically activated water with nonstandard redox and acidity values. The aqueous solution of bovine serum albumin was studied by viscometry, UV spectrometry, time-of-flight secondary ion mass spectrometry, and electrophoresis. Results and discussion. By knowing the interaction patterns of electrochemically activated water and protein molecules, food producers can control the properties of biological raw materials. Bovine serum albumin was studied in metastable fractions of electrochemically activated water obtained in the anode or cathode chamber of an electrochemical reactor. Both fractions of electrochemically activated water appeared to modify the properties of bovine serum albumin. The oxidized fraction of electrochemically activated water (anolyte) converted the protein solution into a more homogeneous molecular composition. The solution of bovine serum albumin in the reduced fraction of electrochemically activated water (catholyte) had an abnormally negative redox potential (–800 mV). The aqueous solution of bovine serum albumin in catholyte retained its initial viscosity for a long time, and its level was lower than in the control sample. This effect was consistent with other physicochemical characteristics of the solution. Conclusion. The research revealed some patterns that make it possible to apply reagent-free viscosity regulation to protein media in the food industry.
Back to Top Top