Journal of Intelligence

Journal Information
EISSN : 2079-3200
Current Publisher: MDPI AG (10.3390)
Total articles ≅ 231
Current Coverage
Archived in

Latest articles in this journal

Published: 7 April 2021
Journal of Intelligence, Volume 9; doi:10.3390/jintelligence9020022

Most theories of intelligence do not directly address the question of whether people with high intelligence can successfully solve real world problems. A high IQ is correlated with many important outcomes (e.g., academic prominence, reduced crime), but it does not protect against cognitive biases, partisan thinking, reactance, or confirmation bias, among others. There are several newer theories that directly address the question about solving real-world problems. Prominent among them is Sternberg’s adaptive intelligence with “adaptation to the environment” as the central premise, a construct that does not exist on standardized IQ tests. Similarly, some scholars argue that standardized tests of intelligence are not measures of rational thought—the sort of skill/ability that would be needed to address complex real-world problems. Other investigators advocate for critical thinking as a model of intelligence specifically designed for addressing real-world problems. Yes, intelligence (i.e., critical thinking) can be enhanced and used for solving a real-world problem such as COVID-19, which we use as an example of contemporary problems that need a new approach.
Published: 6 April 2021
Journal of Intelligence, Volume 9; doi:10.3390/jintelligence9020021

Working memory capacity (WMC) and fluid intelligence (Gf) are highly correlated, but what accounts for this relationship remains elusive. Process-overlap theory (POT) proposes that the positive manifold is mainly caused by the overlap of domain-general executive processes which are involved in a battery of mental tests. Thus, executive processes are proposed to explain the relationship between WMC and Gf. The current study aims to (1) achieve a relatively purified representation of the core executive processes including shifting and inhibition by a novel approach combining experimental manipulations and fixed-links modeling, and (2) to explore whether these executive processes account for the overlap between WMC and Gf. To these ends, we reanalyzed data of 215 university students who completed measures of WMC, Gf, and executive processes. Results showed that the model with a common factor, as well as shifting and inhibition factors, provided the best fit to the data of the executive function (EF) task. These components explained around 88% of the variance shared by WMC and Gf. However, it was the common EF factor, rather than inhibition and shifting, that played a major part in explaining the common variance. These results do not support POT as underlying the relationship between WMC and Gf.
Published: 2 April 2021
Journal of Intelligence, Volume 9; doi:10.3390/jintelligence9020019

A deeper understanding of the processes leading to problem framing and behind finding solutions to problems should help explain variability in the quality of the solutions to those problems. Using Sternberg’s WICS model as the conceptual basis of problem solving, this article discusses the relations between creative, analytical, practical, and wisdom-based approaches as bases for solutions to problems. We use a construct of meta-intelligence to encompass understanding, control, and coordination between these constructs. We propose that constraints can act at each of three levels—individual, contextual, and interactive. Individual constraints include the metacomponents (executive processes) that underpin each of the four kinds of solutions. Contextual constraints direct which of the four approaches are preferred under what circumstances. Finally, interactive constraints involve individual and contextual constraints directly impacting each other’s actions. The model of meta-intelligence and its functioning helps to explain the variability in the ways that individuals frame problems and, as a consequence, in the solutions that are found. The model of meta-intelligence also helps explain why some solutions to problems are so much more comprehensive, and often better, than others.
Published: 2 April 2021
Journal of Intelligence, Volume 9; doi:10.3390/jintelligence9020020

This study examined the unfolding in real time of original ideas during divergent thinking (DT) in five- to six-year-olds and related individual differences in DT to executive functions (EFs). The Alternative Uses Task was administered with verbal prompts that encouraged children to report on their thinking processes while generating uses for daily objects. In addition to coding the originality of each use, the domain-specific DT processes memory retrieval and mental operations were coded from children’s explanations. Six EF tasks were administered and combined into composites to measure working memory, shifting, inhibition, and selective attention. The results replicated findings of a previous study with the same children but at age four years: (1) there was a serial order effect of the originality of uses; and (2) the process mental operations predicted the originality of uses. Next, the results revealed that both domain-general EFs and domain-specific executive processes played a role in the real-time unfolding of original ideas during DT. Particularly, the DT process mental operations was positively related to the early generation of original ideas, while selective attention was negatively related to the later generation of original ideas. These findings deepen our understanding of how controlled executive processes operate during DT.
Published: 1 April 2021
Journal of Intelligence, Volume 9; doi:10.3390/jintelligence9020018

Performance in elementary cognitive tasks is moderately correlated with fluid intelligence and working memory capacity. These correlations are higher for more complex tasks, presumably due to increased demands on working memory capacity. In accordance with the binding hypothesis, which states that working memory capacity reflects the limit of a person’s ability to establish and maintain temporary bindings (e.g., relations between items or relations between items and their context), we manipulated binding requirements (i.e., 2, 4, and 6 relations) in three choice reaction time paradigms (i.e., two comparison tasks, two change detection tasks, and two substitution tasks) measuring mental speed. Response time distributions of 115 participants were analyzed with the diffusion model. Higher binding requirements resulted in generally reduced efficiency of information processing, as indicated by lower drift rates. Additionally, we fitted bi-factor confirmatory factor analysis to the elementary cognitive tasks to separate basal speed and binding requirements of the employed tasks to quantify their specific contributions to working memory capacity, as measured by Recall−1-Back tasks. A latent factor capturing individual differences in binding was incrementally predictive of working memory capacity, over and above a general factor capturing speed. These results indicate that the relation between reaction time tasks and working memory capacity hinges on the complexity of the reaction time tasks. We conclude that binding requirements and, therefore, demands on working memory capacity offer a satisfactory account of task complexity that accounts for a large portion of individual differences in ability.
Published: 1 April 2021
Journal of Intelligence, Volume 9; doi:10.3390/jintelligence9020017

Medical errors have a huge impact on clinical practice in terms of economic and human costs. As a result, technology-based solutions, such as those grounded in artificial intelligence (AI) or collective intelligence (CI), have attracted increasing interest as a means of reducing error rates and their impacts. Previous studies have shown that a combination of individual opinions based on rules, weighting mechanisms, or other CI solutions could improve diagnostic accuracy with respect to individual doctors. We conducted a study to investigate the potential of this approach in cardiology and, more precisely, in electrocardiogram (ECG) reading. To achieve this aim, we designed and conducted an experiment involving medical students, recent graduates, and residents, who were asked to annotate a collection of 10 ECGs of various complexity and difficulty. For each ECG, we considered groups of increasing size (from three to 30 members) and applied three different CI protocols. In all cases, the results showed a statistically significant improvement (ranging from 9% to 88%) in terms of diagnostic accuracy when compared to the performance of individual readers; this difference held for not only large groups, but also smaller ones. In light of these results, we conclude that CI approaches can support the tasks mentioned above, and possibly other similar ones as well. We discuss the implications of applying CI solutions to clinical settings, such as cases of augmented ‘second opinions’ and decision-making.
Published: 16 March 2021
Journal of Intelligence, Volume 9; doi:10.3390/jintelligence9010015

The late James Flynn, to whom this Special Issue is dedicated, suggested that what will matter most to the future of the world is not levels of intelligence but rather how intelligence is deployed. In this article, I argue that we can distinguish between transactional and transformational deployments of intelligence. Loosely following Flynn, I suggest that we need to pay much more attention to the latter rather than the former.
Published: 16 March 2021
Journal of Intelligence, Volume 9; doi:10.3390/jintelligence9010016

There has been considerable debate and interest regarding the factor structure of executive functioning (EF). Therefore, the aim of the current study was to delve into this issue differently, by investigating EF and other cognitive constructs, such as working memory capacity (WMC), relational integration, and divided attention, which may contribute to EF. Here, we examined whether it is possible to provide evidence for a definite model of EF containing the components of updating, shifting, and inhibition. For this purpose, 202 young adults completed a battery of EF, three WMC tests, three relational integration tests, and two divided attention tests. A confirmatory factor analysis on all the cognitive abilities produced a five-factor structure, which included one factor predominately containing shifting tasks, the next factor containing two updating tasks, the third one predominately representing WMC, the fourth factor consisting of relational integration and antisaccade tasks, and finally, the last factor consisting of the divided attention and stop signal tasks. Lastly, a subsequent hierarchical model supported a higher-order factor, thereby representing general cognitive ability.
Published: 5 March 2021
Journal of Intelligence, Volume 9; doi:10.3390/jintelligence9010014

Drawing upon multidimensional theories of intelligence, the current paper evaluates if the Geneva Emotional Competence Test (GECo) fits within a higher-order intelligence space and if emotional intelligence (EI) branches predict distinct criteria related to adjustment and motivation. Using a combination of classical and S-1 bifactor models, we find that (a) a first-order oblique and bifactor model provide excellent and comparably fitting representation of an EI structure with self-regulatory skills operating independent of general ability, (b) residualized EI abilities uniquely predict criteria over general cognitive ability as referenced by fluid intelligence, and (c) emotion recognition and regulation incrementally predict grade point average (GPA) and affective engagement in opposing directions, after controlling for fluid general ability and the Big Five personality traits. Results are qualified by psychometric analyses suggesting only emotion regulation has enough determinacy and reliable variance beyond a general ability factor to be treated as a manifest score in analyses and interpretation. Findings call for renewed, albeit tempered, research on EI as a multidimensional intelligence and highlight the need for refined assessment of emotional perception, understanding, and management to allow focused analyses of different EI abilities.
Published: 4 March 2021
Journal of Intelligence, Volume 9; doi:10.3390/jintelligence9010013

Socio-emotional abilities have been proposed as an extension to models of intelligence, but earlier measurement approaches have either not fulfilled criteria of ability measurement or have covered only predominantly receptive abilities. We argue that faking ability—the ability to adjust responses on questionnaires to present oneself in a desired manner—is a socio-emotional ability that can broaden our understanding of these abilities and intelligence in general. To test this theory, we developed new instruments to measure the ability to fake bad (malingering) and administered them jointly with established tests of faking good ability in a general sample of n = 134. Participants also completed multiple tests of emotion perception along with tests of emotion expression posing, pain expression regulation, and working memory capacity. We found that individual differences in faking ability tests are best explained by a general factor that had a large correlation with receptive socio-emotional abilities and had a zero to medium-sized correlation with different productive socio-emotional abilities. All correlations were still small after controlling these effects for shared variance with general mental ability as indicated by tests of working memory capacity. We conclude that faking ability is indeed correlated meaningfully with other socio-emotional abilities and discuss the implications for intelligence research and applied ability assessment.
Back to Top Top