Journal of Artificial Intelligence Research

Journal Information
ISSN / EISSN : 1076-9757 / 1076-9757
Published by: AI Access Foundation (10.1613)
Total articles ≅ 1,347
Current Coverage
SCOPUS
INSPEC
EI COMPENDEX
PUBMED
DOAJ
SCIE
Archived in
SHERPA/ROMEO
Filter:

Latest articles in this journal

Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, Alexandros A. Voudouris
Journal of Artificial Intelligence Research, Volume 74, pp 227–261-227–261; https://doi.org/10.1613/jair.1.12690

Abstract:
We consider the One-Sided Matching problem, where n agents have preferences over n items, and these preferences are induced by underlying cardinal valuation functions. The goal is to match every agent to a single item so as to maximize the social welfare. Most of the related literature, however, assumes that the values of the agents are not a priori known, and only access to the ordinal preferences of the agents over the items is provided. Consequently, this incomplete information leads to loss of efficiency, which is measured by the notion of distortion. In this paper, we further assume that the agents can answer a small number of queries, allowing us partial access to their values. We study the interplay between elicited cardinal information (measured by the number of queries per agent) and distortion for One-Sided Matching, as well as a wide range of well-studied related problems. Qualitatively, our results show that with a limited number of queries, it is possible to obtain significant improvements over the classic setting, where only access to ordinal information is given.
Khoi D. Hoang, Ferdinando Fioretto, Ping Hou, William Yeoh, Makoto Yokoo, Roie Zivan
Journal of Artificial Intelligence Research, Volume 74, pp 179-225; https://doi.org/10.1613/jair.1.13499

Abstract:
The Distributed Constraint Optimization Problem (DCOP) formulation is a powerful tool for modeling multi-agent coordination problems. To solve DCOPs in a dynamic environment, Dynamic DCOPs (D-DCOPs) have been proposed to model the inherent dynamism present in many coordination problems. D-DCOPs solve a sequence of static problems by reacting to changes in the environment as the agents observe them. Such reactive approaches ignore knowledge about future changes of the problem. To overcome this limitation, we introduce Proactive Dynamic DCOPs (PD-DCOPs), a novel formalism to model D-DCOPs in the presence of exogenous uncertainty. In contrast to reactive approaches, PD-DCOPs are able to explicitly model possible changes of the problem and take such information into account when solving the dynamically changing problem in a proactive manner. The additional expressivity of this formalism allows it to model a wider variety of distributed optimization problems. Our work presents both theoretical and practical contributions that advance current dynamic DCOP models: (i) We introduce Proactive Dynamic DCOPs (PD-DCOPs), which explicitly model how the DCOP will change over time; (ii) We develop exact and heuristic algorithms to solve PD-DCOPs in a proactive manner; (iii) We provide theoretical results about the complexity of this new class of DCOPs; and (iv) We empirically evaluate both proactive and reactive algorithms to determine the trade-offs between the two classes. The final contribution is important as our results are the first that identify the characteristics of the problems that the two classes of algorithms excel in.
Sandhya Saisubramanian, Ece Kamar, Shlomo Zilberstein
Journal of Artificial Intelligence Research, Volume 74, pp 143-177; https://doi.org/10.1613/jair.1.13581

Abstract:
Autonomous systems that operate in the open world often use incomplete models of their environment. Model incompleteness is inevitable due to the practical limitations in precise model specification and data collection about open-world environments. Due to the limited fidelity of the model, agent actions may produce negative side effects (NSEs) when deployed. Negative side effects are undesirable, unmodeled effects of agent actions on the environment. NSEs are inherently challenging to identify at design time and may affect the reliability, usability and safety of the system. We present two complementary approaches to mitigate the NSE via: (1) learning from feedback, and (2) environment shaping. The solution approaches target settings with different assumptions and agent responsibilities. In learning from feedback, the agent learns a penalty function associated with a NSE. We investigate the efficiency of different feedback mechanisms, including human feedback and autonomous exploration. The problem is formulated as a multi-objective Markov decision process such that optimizing the agent’s assigned task is prioritized over mitigating NSE. A slack parameter denotes the maximum allowed deviation from the optimal expected reward for the agent’s task in order to mitigate NSE. In environment shaping, we examine how a human can assist an agent, beyond providing feedback, and utilize their broader scope of knowledge to mitigate the impacts of NSE. We formulate the problem as a human-agent collaboration with decoupled objectives. The agent optimizes its assigned task and may produce NSE during its operation. The human assists the agent by performing modest reconfigurations of the environment so as to mitigate the impacts of NSE, without affecting the agent’s ability to complete its assigned task. We present an algorithm for shaping and analyze its properties. Empirical evaluations demonstrate the trade-offs in the performance of different approaches in mitigating NSE in different settings.
Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, Kurt Mehlhorn
Journal of Artificial Intelligence Research, Volume 74, pp 111-142; https://doi.org/10.1613/jair.1.12911

Abstract:
We study the fair and efficient allocation of a set of indivisible goods among agents, where each good has several copies, and each agent has an additively separable concave valuation function with a threshold. These valuations capture the property of diminishing marginal returns, and they are more general than the well-studied case of additive valuations. We present a polynomial-time algorithm that approximates the optimal Nash social welfare (NSW) up to a factor of e1/e ≈ 1.445. This matches with the state-of-the-art approximation factor for additive valuations. The computed allocation also satisfies the popular fairness guarantee of envy-freeness up to one good (EF1) up to a factor of 2 + ε. For instances without thresholds, it is also approximately Pareto-optimal. For instances satisfying a large market property, we show an improved approximation factor. Lastly, we show that the upper bounds on the optimal NSW introduced in Cole and Gkatzelis (2018) and Barman et al. (2018) have the same value.
Lindsay Weinberg
Journal of Artificial Intelligence Research, Volume 74, pp 75-109; https://doi.org/10.1613/jair.1.13196

Abstract:
This survey article assesses and compares existing critiques of current fairness-enhancing technical interventions in machine learning (ML) that draw from a range of non-computing disciplines, including philosophy, feminist studies, critical race and ethnic studies, legal studies, anthropology, and science and technology studies. It bridges epistemic divides in order to offer an interdisciplinary understanding of the possibilities and limits of hegemonic computational approaches to ML fairness for producing just outcomes for society’s most marginalized. The article is organized according to nine major themes of critique wherein these different fields intersect: 1) how "fairness" in AI fairness research gets defined; 2) how problems for AI systems to address get formulated; 3) the impacts of abstraction on how AI tools function and its propensity to lead to technological solutionism; 4) how racial classification operates within AI fairness research; 5) the use of AI fairness measures to avoid regulation and engage in ethics washing; 6) an absence of participatory design and democratic deliberation in AI fairness considerations; 7) data collection practices that entrench “bias,” are non-consensual, and lack transparency; 8) the predatory inclusion of marginalized groups into AI systems; and 9) a lack of engagement with AI’s long-term social and ethical outcomes. Drawing from these critiques, the article concludes by imagining future ML fairness research directions that actively disrupt entrenched power dynamics and structural injustices in society.
Sriram Ganapathi Subramanian, Matthew E. Taylor, Kate Larson, Mark Crowley
Journal of Artificial Intelligence Research, Volume 74, pp 1-74; https://doi.org/10.1613/jair.1.13445

Abstract:
In the last decade, there have been significant advances in multi-agent reinforcement learning (MARL) but there are still numerous challenges, such as high sample complexity and slow convergence to stable policies, that need to be overcome before wide-spread deployment is possible. However, many real-world environments already, in practice, deploy sub-optimal or heuristic approaches for generating policies. An interesting question that arises is how to best use such approaches as advisors to help improve reinforcement learning in multi-agent domains. In this paper, we provide a principled framework for incorporating action recommendations from online suboptimal advisors in multi-agent settings. We describe the problem of ADvising Multiple Intelligent Reinforcement Agents (ADMIRAL) in nonrestrictive general-sum stochastic game environments and present two novel Q-learning based algorithms: ADMIRAL - Decision Making (ADMIRAL-DM) and ADMIRAL - Advisor Evaluation (ADMIRAL-AE), which allow us to improve learning by appropriately incorporating advice from an advisor (ADMIRAL-DM), and evaluate the effectiveness of an advisor (ADMIRAL-AE). We analyze the algorithms theoretically and provide fixed point guarantees regarding their learning in general-sum stochastic games. Furthermore, extensive experiments illustrate that these algorithms: can be used in a variety of environments, have performances that compare favourably to other related baselines, can scale to large state-action spaces, and are robust to poor advice from advisors.
Fajri Koto, Timothy Baldwin,
Journal of Artificial Intelligence Research, Volume 73; https://doi.org/10.1613/jair.1.13167

Abstract:
In this paper, we propose FFCI, a framework for fine-grained summarization evaluation that comprises four elements: faithfulness (degree of factual consistency with the source), focus (precision of summary content relative to the reference), coverage (recall of summary content relative to the reference), and inter-sentential coherence (document fluency between adjacent sentences). We construct a novel dataset for focus, coverage, and inter-sentential coherence, and develop automatic methods for evaluating each of the four dimensions of FFCI based on cross-comparison of evaluation metrics and model-based evaluation methods, including question answering (QA) approaches, semantic textual similarity (STS), next-sentence prediction (NSP), and scores derived from 19 pre-trained language models. We then apply the developed metrics in evaluating a broad range of summarization models across two datasets, with some surprising findings.
Carlos Escolano, Marta Ruiz Costa-Jussà, José A. R. Fonollosa
Journal of Artificial Intelligence Research, Volume 73, pp 1535-1552; https://doi.org/10.1613/jair.1.12699

Abstract:
State-of-the-art multilingual machine translation relies on a shared encoder-decoder. In this paper, we propose an alternative approach based on language-specific encoder-decoders, which can be easily extended to new languages by learning their corresponding modules. To establish a common interlingua representation, we simultaneously train N initial languages. Our experiments show that the proposed approach improves over the shared encoder-decoder for the initial languages and when adding new languages, without the need to retrain the remaining modules. All in all, our work closes the gap between shared and language-specific encoder-decoders, advancing toward modular multilingual machine translation systems that can be flexibly extended in lifelong learning settings.
Stylianos Loukas Vasileiou, William Yeoh, Tran Cao Son, Ashwin Kumar, Michael Cashmore, Dianele Magazzeni
Journal of Artificial Intelligence Research, Volume 73, pp 1473-1534; https://doi.org/10.1613/jair.1.13431

Abstract:
In human-aware planning systems, a planning agent might need to explain its plan to a human user when that plan appears to be non-feasible or sub-optimal. A popular approach, called model reconciliation, has been proposed as a way to bring the model of the human user closer to the agent’s model. To do so, the agent provides an explanation that can be used to update the model of human such that the agent’s plan is feasible or optimal to the human user. Existing approaches to solve this problem have been based on automated planning methods and have been limited to classical planning problems only. In this paper, we approach the model reconciliation problem from a different perspective, that of knowledge representation and reasoning, and demonstrate that our approach can be applied not only to classical planning problems but also hybrid systems planning problems with durative actions and events/processes. In particular, we propose a logic-based framework for explanation generation, where given a knowledge base KBa (of an agent) and a knowledge base KBh (of a human user), each encoding their knowledge of a planning problem, and that KBa entails a query q (e.g., that a proposed plan of the agent is valid), the goal is to identify an explanation ε ⊆ KBa such that when it is used to update KBh, then the updated KBh also entails q. More specifically, we make the following contributions in this paper: (1) We formally define the notion of logic-based explanations in the context of model reconciliation problems; (2) We introduce a number of cost functions that can be used to reflect preferences between explanations; (3) We present algorithms to compute explanations for both classical planning and hybrid systems planning problems; and (4) We empirically evaluate their performance on such problems. Our empirical results demonstrate that, on classical planning problems, our approach is faster than the state of the art when the explanations are long or when the size of the knowledge base is small (e.g., the plans to be explained are short). They also demonstrate that our approach is efficient for hybrid systems planning problems. Finally, we evaluate the real-world efficacy of explanations generated by our algorithms through a controlled human user study, where we develop a proof-of-concept visualization system and use it as a medium for explanation communication.
Taha Belkhouja, Janardhan Rao Doppa
Journal of Artificial Intelligence Research, Volume 73, pp 1435-1471; https://doi.org/10.1613/jair.1.13543

Abstract:
Time-series data arises in many real-world applications (e.g., mobile health) and deep neural networks (DNNs) have shown great success in solving them. Despite their success, little is known about their robustness to adversarial attacks. In this paper, we propose a novel adversarial framework referred to as Time-Series Attacks via STATistical Features (TSA-STAT). To address the unique challenges of time-series domain, TSA-STAT employs constraints on statistical features of the time-series data to construct adversarial examples. Optimized polynomial transformations are used to create attacks that are more effective (in terms of successfully fooling DNNs) than those based on additive perturbations. We also provide certified bounds on the norm of the statistical features for constructing adversarial examples. Our experiments on diverse real-world benchmark datasets show the effectiveness of TSA-STAT in fooling DNNs for time-series domain and in improving their robustness.
Back to Top Top