Journal Information
ISSN / EISSN : 2079-7737 / 2079-7737
Published by: MDPI (10.3390)
Total articles ≅ 1,983
Current Coverage
SCOPUS
PUBMED
PMC
DOAJ
SCIE
Archived in
EBSCO
SHERPA/ROMEO
Filter:

Latest articles in this journal

Published: 15 October 2021
by MDPI
Abstract:
Natural killer enhancing factor (NKEF) belongs to the peroxiredoxin family of proteins, a group of antioxidants that has been extensively studied in mammals. Recently, we identified NKEF in the immunoprecipitated proteome of rainbow trout red blood cells (RBCs) exposed to viral hemorrhagic septicemia virus (VHSV). In the present study, we evaluated the role of NKEF in the antiviral response of rainbow trout against VHSV by examining the expression profile of NKEF in VHSV-exposed RBCs and rainbow trout gonad-2 (RTG-2) cell line. We found an in vitro correlation between decreased VHSV replication and increased NKEF expression after RBCs were exposed to VHSV, however this was not found in RTG-2 cells where the infection highly increased and nkef transcripts remained almost unchanged. In addition, siRNA silencing of the nkef gene in rainbow trout RBCs and RTG-2 cells resulted in increased VHSV replication. We also found a correlation between nkef gene silencing and a decrease in the expression of genes related to type 1 interferon (IFN1) pathway. These findings indicated that NKEF is involved in the antiviral mechanisms of rainbow trout RBCs against VHSV and thus support its antiviral role and implication in the modulation of their immune response. Finally, overexpression of NKEF in an EPC cell line significantly reduced VHSV infectivity and was coupled to an increment in IFN1-related genes. In conclusion, NKEF may be a potential target for new therapeutic strategies against viral infections.
Published: 15 October 2021
by MDPI
Abstract:
The trade of non-native pets, especially of non-domesticated and exotic animals, and their subsequent release and establishment of populations is one of the major pathways of introduction for invasive alien reptiles, amphibia, birds and mammals. Here, we use a group of arboreal mammals, tree squirrels of the genus Callosciurus, as a well-documented case study, reviewing the pathways of introduction, the current areas of non-native distribution, the rate of establishment success and the challenge and legal importance of species identification. We further illustrate the importance of early detection and effective monitoring methods and plans. Next, we document how they interfere with native species, their risk of acting as vectors for emerging infectious diseases and their potential role in maintaining parasitic infections that can affect human health. We conclude by reviewing the current management, or the lack of it, and highlight the diverse biological, social, political and economic reasons that make control/eradication of these charismatic species difficult or even impractical in most countries. However, reviewing the only two successful eradications of the IAS, we highlight the need to acknowledge the public opinion and the importance of communication, transparency and the engagement of a diversity of stakeholders to create a consensus about the actions to undertake.
Published: 15 October 2021
by MDPI
Abstract:
The Bemisia tabaci cryptic species contains 39 known mitotypes of which the B and Q are best recognized for having established outside their extant endemic range. In the 1980s, previously uncharacterized haplotype(s) of the B mitotype rapidly established in tropical and subtropical locales distant from their presumed center of origin, leading to displacement of several native mitotypes and extreme damage to crops and other vegetation particularly in irrigated agroecosystems. To trace the natural and evolutionary history of the invasive B haplotypes, a phylo-biogeographic study was undertaken. Patterns of single nucleotide polymorphisms (SNPs) and signatures potentially indicative of geographic isolation were investigated using a globally representative mitochondrial cytochrome oxidase I gene (mtCOI) sequence database. Eight haplotype groups within the North Africa-Middle East (NAFME) region were differentiated, NAFME 1–8. The NAFME 1–3 haplotypes were members of the same population that is associated with warm desert climate niches of the Arabian Peninsula and east coastal Africa-Ethiopia. The NAFME 4 and 5 haplotypes are endemic to warm and cold semi-arid niches delimited by the Irano-Turanian floristic region, itself harboring extensive biodiversity. Haplotypes 6 and 7 co-occurred in the Middle East along eastern Mediterranean Sea landmasses, while NAFME 8 was found to be endemic to Cyprus, Turkey, and desert micro-niches throughout Egypt and Israel. Contrary to claims that collectively, the B mitotype is invasive, NAFME 6 and 8 are the only haplotypes to have established in geographical locations outside of their zone of endemism.
Published: 15 October 2021
by MDPI
Abstract:
Tricholoma matsutake forms a symbiotic association with coniferous trees, developing mycelial aggregations, called ‘shiro’, which are characterized by distinct chemical and physical properties from nearby forest bulk soil. The fungal diversity living in shiro soil play key roles in nutrient cycles for this economically important mushroom, but have not been profiled across large spatial and environmental gradients. Samples of shiro and non-shiro (nearby bulk soil) were taken from five field sites where sporocarps naturally formed. Phospholipid fatty acids (PLFA) and Illumina MiSeq sequencing were combined to identify fungal biomass and community structure. Matsutake dominated in the shiro, which had a significantly reduced saprotrophic fungi biomass compared to non-shiro soil. Fungal diversity was negatively correlated with the relative abundance of T. matsutake in the shiro soil. The fungal community in the shiro was characterized by similar fungal species composition in most samples regardless of forest types. Matsutake coexisted with a specific fungal community due to competition or nutrient interactions. Oidiodendron was positively correlated with the abundance of T. matsutake, commonly cohabitant in the shiro. In contrast, Helotiales and Mortierella were negatively correlated with T. matsutake, both of which commonly inhabit the non-shiro soil but do not occur in shiro soils. We conclude that T. matsutake generate a dominance effect to shape the fungal community and diversity in shiro soil across distinctive forest types.
Published: 15 October 2021
by MDPI
Abstract:
Sporadic Alzheimer’s Disease (AD) is the most common form of dementia, and its severity is characterized by the progressive formation of tau neurofibrillary tangles along a well-described path through the brain. This spatial progression provides the basis for Braak staging of the pathological progression for AD. Tau protein is a necessary component of AD pathology, and recent studies have found that soluble tau species with selectively, but not extensively, modified epitopes accumulate along the path of disease progression before AD-associated insoluble aggregates form. As such, modified tau may represent a key cellular stressing agent that potentiates selective vulnerability in susceptible neurons during AD progression. Specifically, studies have found that tau phosphorylated at sites such as T181, T231, and S396 may initiate early pathological changes in tau by disrupting proper tau localization, initiating tau oligomerization, and facilitating tau accumulation and extracellular export. Thus, this review elucidates potential mechanisms through which tau post-translational modifications (PTMs) may simultaneously serve as key modulators of the spatial progression observed in AD development and as key instigators of early pathology related to neurodegeneration-relevant cellular dysfunctions.
Published: 15 October 2021
by MDPI
Abstract:
Pomacea canaliculata is a freshwater gastropod known for being both a highly invasive species and one of the possible intermediate hosts of the mammalian parasite Angiostrongylus cantonensis. With the aim of providing new information concerning P. canaliculata biology and adaptability, the first proteome of the ampulla, i.e.,a small organ associated with the circulatory system and known as a reservoir of nitrogen-containing compounds, was obtained. The ampullar proteome was derived from ampullae of control snails or after exposure to a nematode-based molluscicide, known for killing snails in a dose- and temperature-dependent fashion. Proteome analysis revealed that the composition of connective ampulla walls, cell metabolism and oxidative stress response were affected by the bio-pesticide. Ultrastructural investigations have highlighted the presence of rhogocytes within the ampullar walls, as it has been reported for other organs containing nitrogen storage tissue. Collected data suggested that the ampulla may belong to a network of organs involved in controlling and facing oxidative stress in different situations. The response against the nematode-based molluscicide recalled the response set up during early arousal after aestivation and hibernation, thus encouraging the hypothesis that metabolic pathways and antioxidant defences promoting amphibiousness could also prove useful in facing other challenges stimulating an oxidative stress response, e.g., immune challenges or biocide exposure. Targeting the oxidative stress resistance of P. canaliculata may prove helpful for increasing its susceptibility to bio-pesticides and may help the sustainable control of this pest’s diffusion.
Published: 15 October 2021
by MDPI
Abstract:
Human mitochondria are highly dynamic organelles, fusing and budding to maintain reticular networks throughout many cell types. Although extending to the extremities of the cell, the majority of the network is concentrated around the nucleus in most of the commonly cultured cell lines. This organelle harbours its own genome, mtDNA, with a different gene content to the nucleus, but the expression of which is critical for maintaining oxidative phosphorylation. Recent advances in click chemistry have allowed us to visualise sites of mitochondrial protein synthesis in intact cultured cells. We show that the majority of translation occurs in the peri-nuclear region of the network. Further analysis reveals that whilst there is a slight peri-nuclear enrichment in the levels of mitoribosomal protein and mitochondrial rRNA, it is not sufficient to explain this substantial heterogeneity in the distribution of translation. Finally, we also show that in contrast, a mitochondrial mRNA does not show such a distinct gradient in distribution. These data suggest that the relative lack of translation in the peripheral mitochondrial network is not due to an absence of mitoribosomes or an insufficient supply of the mt-mRNA transcripts.
Published: 15 October 2021
by MDPI
Abstract:
Sugarcane is an important sugar crop and it can be subjected to ratooning for several years. The advantages of ratooning include quality improvement, efficiency enhancement, and reduced costs and energy use. The genotype, environment, cultivation management, and harvesting technology affect the productivity and longevity of ratoon cane, with the genetic basis being the most critical factor. However, the majority of research has been focused on only limited genotypes, and a few studies have evaluated up to 100 sugarcane germplasm resources. They mainly focus on the comparison among different genotypes or among plant cane, different selection strategies for the first and second ratoon crops, together with screening indicators for the selection of stronger ratooning ability. In this paper, previous studies are reviewed in order to analyze the importance of sugarcane ratooning, the indicative traits used to evaluate ratooning ability, the major factors influencing the productivity and longevity of ratooning, the genetic basis of variation in ratooning ability, and the underlying mechanisms. Furthermore, the shortcomings of the existing research on sugarcane ratooning are highlighted. We then discuss the focus of future ratoon sugarcane research and the technical methods that will shorten the selection cycle and increase the genetic gain of ratooning ability, particularly the development of linked markers. This review is expected to provide a reference for understanding the mechanisms underlying the formation of ratooning ability and for breeding sugarcane varieties with a strong ratooning ability.
Published: 14 October 2021
by MDPI
Abstract:
Milk protein (MP) synthesis in the mammary gland of dairy cows is a complex biological process. As the substrates for protein synthesis, amino acids (AAs) are the most important nutrients for milk synthesis. Free AAs (FAAs) are the main precursors of MP synthesis, and their supplies are supplemented by peptide-bound AAs (PBAAs) in the blood. Utilization of AAs in the mammary gland of dairy cows has attracted the great interest of researchers because of the goal of increasing MP yield. Supplying sufficient and balanced AAs is critical to improve MP concentration and yield in dairy cows. Great progress has been made in understanding limiting AAs and their requirements for MP synthesis in dairy cows. This review focuses on the effects of FAA and PBAA supply on MP synthesis and their underlying mechanisms. Advances in our knowledge in the field can help us to develop more accurate models to predict dietary protein requirements for dairy cows MP synthesis, which will ultimately improve the nitrogen utilization efficiency and lactation performance of dairy cows.
Published: 14 October 2021
by MDPI
Abstract:
Extra virgin olive oil (EVOO) is important in people’s daily diets. Paracetamol is a widely used analgesic and antipyretic drug. The aim of this study is to investigate the protective effect of EVOO against hematotoxicity and testicular toxicity induced by paracetamol overdose in rats. Forty rats were divided into four groups. Group 1 rats were given water (control), Group 2 rats were given oral EVOO daily (2 mL/kg b.wt.), Group 3 rats were given oral paracetamol daily (650 mg/kg b.wt.), and Group 4 rats were given paracetamol and EVOO daily. After 15 days, blood and testis samples were collected for biochemical, histological, and ultrastructural studies. The results show that paracetamol decreased the PCV, Hb, and RBC counts relative to the control, and significantly increased the WBC counts and stab cells in Group 3. A significant decrease in blood testosterone was found in Group 3 compared to the control, while a significant increase in testosterone levels was observed in Group 4 compared to Group 3. Light and electron microscopy showed disorganized seminiferous tubules in Group 3. The testis in Group 4 appeared in normal shape. In conclusion, the results indicate that EVOO protects the testis and blood from paracetamol toxicity and may also increase fertility in male rats.
Back to Top Top