Jurnal INFORM

Journal Information
ISSN / EISSN : 2502-3470 / 2581-0367
Published by: Dr. Soetomo University (10.25139)
Total articles ≅ 49
Current Coverage
DOAJ
Filter:

Latest articles in this journal

Dewi Salma Salsabila, Rinabi Tanamal
Published: 31 July 2020
Jurnal INFORM, Volume 5, pp 92-98; https://doi.org/10.25139/inform.v0i1.2771

Abstract:
Shown symptoms in digestive diseases might be similar, resulting in patient’s suspected diseases before and after diagnosis attempt might turn out to be different. This paper aims to build a design of an expert system for digestive disease identification using Naïve Bayes methodology for iOS-based applications. The result from this paper helps medical interns to increase the accuracy in predicting patient’s suspected digestive disease. A precise prediction in suspected disease identification can minimalize unnecessary diagnosis attempts, which saves time and reduces cost. Naïve Bayes is chosen because it has a higher accuracy level than other classification methods. This research includes collecting data through literature reviews on digestive diseases and their symptoms, processing the data to be turned into a knowledge base for the expert system, conducting data training using Naïve Bayes by the designed expert system application through this research. The result from the conducted data training using Naïve Bayes methodology shows that the expert system application has a higher accuracy level, which is 84%.
Mahmud Suyuti, Endang Setyati
Published: 31 July 2020
Jurnal INFORM, Volume 5, pp 62-68; https://doi.org/10.25139/inform.v0i1.2707

Abstract:
The digital image processing technique is a product of computing technology development. Medical image data processing based on a computer is a product of computing technology development that can help a doctor to diagnose and observe a patient. This study aimed to perform classification on the image of the thorax by using Convolutional Neural Network (CNN). The data used in this study is lung thorax images that have previously been diagnosed by a doctor with two classes, namely normal and pneumonia. The amount of data is 2.200, 1.760 for training, and 440 for testing. Three stages are used in image processing, namely scaling, gray scaling, and scratching. This study used Convolutional Neural Network (CNN) method with architecture ResNet-50. In the field of object recognition, CNN is the best method because it has the advantage of being able to find its features of the object image by conducting the convolution process during training. CNN has several models or architectures; one of them is ResNet-50 or Residual Network. The selection of ResNet-50 architecture in this study aimed to reduce the loss of gradients at certain network-level depths during training because the object is a chest image of X-Ray that has a high level of visual similarity between some pathology. Moreover, several visual factors also affect the image so that to produce good accuracy requires a certain level of depth on the CNN network. Optimization during training used Adaptive Momentum (Adam) because it had a bias correction technique that provided better approximations to improve accuracy. The results of this study indicated the thorax image classification with an accuracy of 97.73%.
Aloysius Matz Teguh Utomo
Published: 31 July 2020
Jurnal INFORM, Volume 5, pp 54-61; https://doi.org/10.25139/inform.v0i1.2691

Abstract:
Loyal customers are one of the factors that determine the development of a business. Therefore, businesses need a strategy to keep customers loyal, even making customers who were previously less loyal to become more loyal. The strategy used must be right on target according to customer segmentation. The purpose of this paper is to model a cluster of customer loyalty to help businesses in making the right decisions of marketing strategy. Segmentation is done using the k-means algorithm with LRIFMQ (length, recency, interval, frequency, monetary, quantity) as parameters, and the CLV (customer lifetime value) of each cluster is calculated. Data obtained from PT. XYZ (a company engaged in food processing) for one year (1 January 2019 - 31 December 2019), with 337.739 transactions, and 26.683 customers. AHP (analytical hierarchy process) method is used for LRIFMQ weighting because this method has a consistency index calculation. The silhouette coefficient is used to calculate the cluster quality and determine the optimal number of clusters. The best results are obtained with the silhouette coefficient value of 0,632904 with the number of clusters 6.
Andi Sanjaya, Endang Setyati, Herman Budianto
Published: 31 July 2020
Jurnal INFORM, Volume 5, pp 99-104; https://doi.org/10.25139/inform.v0i1.2740

Abstract:
This research was conducted to observe the use of architectural model Convolutional Neural Networks (CNN) LeNEt, which was suitable to use for Pandava mask objects. The Data processing in the research was 200 data for each class or similar with 1000 trial data. Architectural model CNN LeNET used input layer 32x32, 64x64, 128x128, 224x224 and 256x256. The trial result with the input layer 32x32 succeeded, showing a faster time compared to the other layer. The result of accuracy value and validation was not under fitted or overfit. However, when the activation of the second dense process as changed from the relu to sigmoid, the result was better in sigmoid, in the tem of time, and the possibility of overfitting was less. The research result had a mean accuracy value of 0.96.
Mohamad As'ad, Sujito Sujito, Sigit Setyowibowo
Published: 31 July 2020
Jurnal INFORM, Volume 5, pp 69-73; https://doi.org/10.25139/inform.v0i1.2715

Abstract:
Gold is a precious metal that functions as a gem and also an investment. Gold investment is the reason for many people because it is practical, not easily damaged, easy cashed, not taxable, and other purposes. Based on this, many people choose gold as an investment. The problem for people who will invest in gold is related to uncertain gold price predictions so that the accuracy of forecasting methods are needed. The purpose of this paper is to forecast accurately daily gold prices using the Neural Network Autoregressive (NNAR) method. Training Data to find out the value of accuracy in the NNAR method uses secondary data obtained from Yahoo Finance in the form of daily gold prices. Test results on the NNAR method produce a better and more accurate level using the NNAR (25,13) model with a MAPE value of 0.370707, a MASE of 0.5851083, and an RMSE of 6.939331. The conclusion of the results of this paper is the daily price of gold is influenced by the daily price of gold a day ago to 24 periods ago with the NNAR (25,13) model.
Yuliyanto Agung Prabowo, Wahyu Setyo Pambudi, Ilmi Rizki Imaduddin
Published: 31 July 2020
Jurnal INFORM, Volume 5, pp 74-79; https://doi.org/10.25139/inform.v0i1.2743

Abstract:
Folding machine is a tool that is needed in the small and medium scale laundry industry that has a goal for the efficiency of production time. The flip folder is the main component of this tool, which functions to fold the clothes by moving to form a certain deflection angle where the movement process is controlled by the controller. The system modeling process is the first step to study the characteristics of the system. In a dynamic system, the form of linear modeling is approved difficult to obtain a model that represents the actual physical model. Selecting the structure of the NARX (Nonlinear Autoregressive eXogenous) model was chosen to obtain the dynamic nature of the system. An estimation method to obtain parameter values from the system used Artificial Neural Networks (ANN), which is a trading scheme to be able to predict the output of a system that uses input data and output. Based on the offline assessment process using measurement data obtained by the NARX ANN model on the variation of the number of layers in 30 with a value of MSE 0,38641.
Mochamad Mobed Bachtiar, Iwan Kurnianto Wibowo, Rakasiwi Bangun Hamarsudi
Published: 31 July 2020
Jurnal INFORM, Volume 5, pp 86-91; https://doi.org/10.25139/inform.v0i1.2744

Abstract:
The ERSOW robot is a soccer robot developed by Politeknik Elektronika Negeri Surabaya, Indonesia. One important ability of a soccer robot is the ability to find the goal in the field. Goal Post is often used as a sign by soccer robots in a match. The mark is a reference robot in the field to be used in determining the strategy. By knowing the location of the goal in a field, the soccer robot can decide to maneuver in the match to get the right goal kick. There are various methods of detecting goals. One of them is to detect goal posts using vision. In this study, the radial search lines method is used to detect the goalposts as markers. Image input is generated from an omnidirectional camera. The goal area is detected on the front side of the goal area. With experiments from 10 robot position points in the field, only 1 position point cannot detect the goal. The robot cannot detect the goal because what is seen from the camera is the side of the goal, so the front side of the goal area is not visible.
Akhmad Fahruzi, Ricky Rhamdany
Published: 31 July 2020
Jurnal INFORM, Volume 5, pp 80-85; https://doi.org/10.25139/inform.v0i1.2720

Abstract:
The value of rice grain content after harvest is quite high, around 20-23% in the dry season, and around 24-27% in the wet season. It was drying grain after harvest was processed by the conventional or manual method that carried out the grain drying in the sun. This method has several disadvantages, such as the dependence on the weather, requires a large area, and 54 hours for drying so that the grain becomes dry with a moisture content of 14.12%. From this problem, the researchers made a grain drying machine that could work automatically. The drying machine is made to solve the issues of conventional grain drying so that the machine was completed with a K type thermocouple temperature sensor and grain moisture content. Whereas the heating media uses a fire that is fueled with LPG gas, and then the heat from the fire has flowed into the furnace or grain drying chamber. The heating arrangement was made by regulating of flowing LPG gas to the nozzle through the opened and closed variable valve where the valve shaft was connected to the DC motor shaft. The application of the PID method also used in this drying machine, which has a purpose while controlling the drying temperature to match the Set Value (SV) or the desired temperature at 38oC. The grain moisture content value is considered to have dried up when the grain moisture content value is 14%. The PID method that is implanted into the ATmega16 microcontroller will give a signal to the motor driver circuit to regulate the direction of rotation of the DC motor connected to the opened and closed valve variable. PID method testing was done by trial error and has produced a steady-state error of 5.2% at S0056=38oC with constant values Kp=2, Ki=2, and Kd=10. Whereas for drying grain testing on harvested is done by selecting Ciherang grain with a moisture content of 20% and a weight of 3 kg. The grain drying process takes 30 minutes so that the value of the water content becomes 14% with a drying temperature of 38oC, so the grain drying rate on this machine is 0.17% per minute.
Khoirul Izzah, , Dwi Rolliawati
Published: 20 February 2020
Jurnal INFORM, Volume 5, pp 45-53; https://doi.org/10.25139/inform.v5i1.2300

Abstract:
One of the goals of the Indonesian state is to prosper the people by reducing total poverty. To overcome poverty levels, the Indonesian government created a policy of the Program Keluarga Harapan(PKH) in the form of subsidized assistance. PKH beneficiaries are families registered in Basis Data Terpadu(BDT) data that meet the criteria of pregnant(K1), childhood(K2), elementary school(K3), junior high school(K4), high school(K5), elderly(K6), and disability(K7). This study aims to assist the Bojonegoro Social Office in choosing the right target in determining the eligibility of PKH recipients by automation. PKH recipient decision support systems are developed with PHP, MySQL databases, and the Analytic Network Process (ANP) algorithm. By using test data of 3 villages namely Bangilan Village, Sembung Village, and Tapelan Village, Kapas District, Bojonegoro Regency in 2019, the system was able to provide PKH recipient data recommendations in accordance with the criteria weights requirements. Based on the confusion test matrix, the SPK precision level is 39.64% (moderate), recall is 39.29% (moderate), and accuracy is 69.12% (high). While testing system functionality using black box testing resulted in 93.35% of the system running well. This shows that the PKH recipient Decision Support System is feasible to be implemented in the Dinas Sosial Bojonegoro
Mujib Hidayah, Edi Prihartono, Budi Santoso
Published: 20 February 2020
Jurnal INFORM, Volume 5, pp 39-44; https://doi.org/10.25139/inform.v3i2.1053

Abstract:
The main obstacles of the tempe producers in fermentation process are the uncertain temperature and weather factors, if in the cold temperatures of tempe producers tend to still use manual way to keep the temperature in tempe, that is by covering the surface using cloth, newspaper or other cover because for the fermentation process in tempe temperature required ranges between 30-35o C and humidity below 70%. With unstable temperature can certainly affect the duration of tempe fermentation process. For that required a tool that can stabilize the temperature of the room on tempe fermentation process. Automatic temperature control for the manufacture of tempe is using fuzzy logic method as a smart control system, Arduino Mega 2560 as a microcontroller, DHT11 sensor as the detector temperature and humidity of the room, YL-69 & YL-38 sensors to detect the tempe water content that has become tempe parameter already mature or not, and heater and fan as actuators to stabilize the room temperature. Automatic temperature regulator for tempe making with fuzzy logic method is able to stabilize room temperature in fermentation process tempe and success rate of this tool in category good enough because get value from precision equal to 65%, recall 100%, and accuracy equal to 65%
Back to Top Top