Energy and Power Engineering

Journal Information
ISSN / EISSN : 1949-243X / 1947-3818
Published by: Scientific Research Publishing, Inc. (10.4236)
Total articles ≅ 1,031
Current Coverage
PUBMED
Archived in
SHERPA/ROMEO
Filter:

Latest articles in this journal

Elmi Idil Mouhoumed, Mohamed-Awal Abdillahi Mohamed, Abdourachid Ibrahim Igueh
Energy and Power Engineering, Volume 14, pp 201-216; https://doi.org/10.4236/epe.2022.146011

Abstract:
Experimental studies were carried out to determine the influence of solar radiation, temperatures variations, basin water amount, wind speed, glass cover thickness and salinity on the daily production of the distillate output using solar desalination process, namely single slope solar still to produce fresh water from seawater in the context of Djibouti. The temperatures variations increase in relation to solar radiation. Consequently the hourly distillate output increases and reaches a maximum around noon when the solar still receives maximum intensity of solar radiation. An inverse relation is found between glass cover thickness, basin water amount and distillate output production. The variation wind speed has an effect on the daily production; which increases in relation to wind speed. In order to assess the effect of salinity on the daily production, the solar still is provided with brackish water to compare the daily production obtained from seawater. Experimental results show that the cumulative productivity decreases when there is an increase of salinity. In addition, the quality of the distillate output was tested by measuring TDS, EC, pH, hardness water and chlorides and was compared to WHO standards. The values obtained for these parameters were in accordance with the requirements of WHO and good removal efficiency for four parameters.
Nicholas N. Tasie, Friday B. Sigalo, Valentine B. Omubo-Pepple, Chigozie Israel-Cookey
Energy and Power Engineering, Volume 14, pp 274-290; https://doi.org/10.4236/epe.2022.147015

Abstract:
In this paper, we deployed the multiple linear regression method in developing a solar power output model for solar energy production, where the meteorological parameters are the independent variables. We fitted the model and found that the meteorological variables considered accounted for 94.88% and 99.61% of the power output in both dry and rainy seasons. We observed from the work that the solar panel performs well in all seasons but slightly better in the rainy seasons. This could be attributed to the washing away of dust particles from solar panels by the rain and higher operating temperature different from the specified manufactured temperature of 25°C. We observed that other factors such as the cloud slightly affect the optimal performance of the system. Panels inclined at an angle of 5° (Tilt) and facing south azimuth performs optimally, periodic washing of the surface of solar panels enhances optimal performance.
Patrick Lindecker
Energy and Power Engineering, Volume 14, pp 35-100; https://doi.org/10.4236/epe.2022.141003

Abstract:
In the standard fusion reactors, mainly tokamaks, the mechanical gain obtained is below 1. On the other hand, there are colliding beam fusion reactors, for which, the not neutral plasma and the space charge limit the number of fusions to a very small number. Consequently, the mechanical gain is extremely low. The proposed reactor is also a colliding beam fusion reactor, configured in Stellarator, using directed beams. D+/T+ ions are injected in opposition, with electrons, at high speeds, so as to form a neutral beam. All these particles turn in a magnetic loop in form of figure of “0” (“racetrack”). The plasma is initially non-thermal but, as expected, rapidly becomes thermal, so all states between non-thermal and thermal exist in this reactor. The main advantage of this reactor is that this plasma after having been brought up near to the optimum conditions for fusion (around 68 keV), is then maintained in this state, thanks to low energy non-thermal ions (≤15 keV). So the energetic cost is low and the mechanical gain (Q) is high (>>1). The goal of this article is to study a different type of fusion reactor, its advantages (no net plasma current inside this reactor, so no disruptive instabilities and consequently a continuous working, a relatively simple way to control the reactor thanks to the particles injectors), and its drawbacks, using a simulator tool. The finding results are valuable for possible future fusion reactors able to generate massive energy in a cleaner and safer way than fission reactors.
Paul Njogu, Francis Xavier Ochieng, Benard Ogembo, Stephen Ondimu, Christopher Kanali, Erick Ronoh, Daniel Omondi, Hiram Ndiritu
Energy and Power Engineering, Volume 14, pp 147-155; https://doi.org/10.4236/epe.2022.143007

Abstract:
Mesophilic biogas production and substrate decomposition is one of the significant limiting steps in biogas generation. The rate of generation and quality often affect the viability of biogas systems. This study assessed the potential for biogas process catalysis using powdered Sorghum bicolor L., Zea mays, and Pennisetum glaucum. The kinetics and biogas generation processes were studied. Experiments were conducted in 1 m3 tubular batch reactors, where batches were dosed with various organic biomolecules. Results show that the use of P. glaucum L. and S. bicolor L. reduced the biogas retention times significantly. Biogas generation commenced after the first day for digesters fed with S. bicolor L. and P. glaucum L. while one with Z. mays and control occurred on day two. The rate of biomethanation and methane content were enhanced. S. bicolor L. led to the highest methane content. Findings reveal that locally available organic biomolecules improved biogas quality and quantity.
Godwin Effiong, Priye Kenneth Ainah, Nduka W. Aguiyi
Energy and Power Engineering, Volume 14, pp 313-326; https://doi.org/10.4236/epe.2022.148017

Abstract:
Power system stability is a very important issue in power system engineering because a decrease in the stability margins can cause unacceptable operating conditions, which leads to frequent failures. In this paper, SKM POWER TOOLS PTW-32 Version 4.5.2.0 was used to study different Stability recovery tests after a medium voltage short circuit fault on a turbine generator in the power system. The analysis focused on the generator electrical and mechanical powers stability recovery test, generator speed stability recovery test, excitation voltage stability recovery test, bus voltage and bus frequency stability recovery test. In our study, when the introduced fault was cleared after 0.5 s, it reveals that the recovery rate of electrical power was much faster than that of mechanical power. Also, the results reveal that it took about 10 seconds for the turbine speed to stabilize while it took fewer seconds for the frequency to stabilize.
Cheikh Saliou Toure, Papa Lat Tabara Sow, Fakora Dia, Senghane Mbodji
Energy and Power Engineering, Volume 14, pp 233-247; https://doi.org/10.4236/epe.2022.147013

Abstract:
Using an experimental setup, the series configurations (SC) and the parallel configurations (PC) of the PV cell connection are studied to compare their performance under the condition of partial shading s. The performance of the configurations is evaluated by comparing the open-circuit voltage, the short-circuit current, the maximum power point (MPP), the voltage and current corresponding to MPP, and the Fill Factor (FF). The variations of the series resistance and the shunt resistance of a PV module under different irradiance levels are also determined by considering the effect of thermal voltage. Finally, a comparison between the performance losses in the different configurations is presented. The results of this study show that the parallel configuration has the best performance under the conditions of partial shade in the context of this work.
Mathias Bashahu, Pierre Nsabimana, Juvenal Barakamfitiye, Fidele Niyukuri
Energy and Power Engineering, Volume 14, pp 181-200; https://doi.org/10.4236/epe.2022.145010

Abstract:
1-year hourly wind speed data from two Burundian stations, namely Bujumbura and Muyinga, have been processed in this work to bring an efficient help for the planning and installation of wind energy conversion systems (WECS) at those localities. Mean seasonal and diurnal variations of wind direction and wind shear exponent have been derived. Two-parameter Weibull probability density functions (PDFs) fitting the observed monthly and annual wind speed relative frequency distributions have been implemented. As shown through three complementary statistical tests, the fitting technique was very satisfactory. A wind resource analysis at 10 m above ground level (AGL) has led to a mean power density at Bujumbura which is almost thirteen fold higher than at Muyinga. The use of the empirical power law to extrapolate wind characteristics at heights from 150 to 350 m AGL has shown that energy potential of hilltops around Muyinga was only suitable for small, individual scale wind energy applications. At the opposite, wind energy potential of ridge-tops and hilltops around Bujumbura has been found suitable for medium and large scale electricity production. For that locality and at those heights, energy outputs and capacity factors (CF or Cf) have been computed for ten selected wind turbines (WTs), together with costs of electricity (COE) using the present value of cost (PVC) method. Amongst those WTs, YDF-1500-87 and S95-2.1 MW have emerged as the best options for installation owing to their highest CF and lowest COE. Moreover, an analysis of those two quantities at monthly basis for YDF-1500-87 WT has led to its best performance in the dry season. Compared to the average present COE of household hydroelectricity consumption, results of this study have evidenced economical feasibility and benefit of WECS setting in selected Burundian sites in order to supplement traditional electricity sources.
Akira Nishimura, Daiki Mishima, Nozomu Kono, Kyohei Toyoda, Mohan Lal Kolhe
Energy and Power Engineering, Volume 14, pp 248-273; https://doi.org/10.4236/epe.2022.147014

Abstract:
It is known from the New Energy and Industry Technology Development Organization (NEDO) roam map Japan, 2017 that the polymer electrolyte fuel cell (PEFC) power generation system is required to operate at 100°C for application of mobility usage from 2020 to 2025. This study aims to clarify the effect of separator thickness on the distribution of the temperature of reaction surface (Treact) at the initial temperature of cell (Tini) with flow rate, relative humidity (RH) of supply gases as well as RH of air surrounding cell of PEFC. The distribution of Treact is estimated by means of the heat transfer model considering the H2O vapor transfer proposed by the authors. The relationship between the standard deviation of Treact-Tini and total voltage obtained in the experiment is also investigated. We can know the effect of the flow rate of supply gas as well as RH of air surrounding cell of PEFC on the distribution of Treact-Tini is not significant. It is observed the wider distribution of Treact-Tini provides the reduction in power generation performance irrespective of separator thickness. In the case of separator thickness of 1.0 mm, the standard deviation of Treact-Tini has smaller distribution range and the total voltage shows a larger variation compared to the other cases.
Ramatou Konate, Bernard Zouma, Adama Ouedraogo, Bruno Korgo, Martial Zoungrana, Sié Kam
Energy and Power Engineering, Volume 14, pp 133-145; https://doi.org/10.4236/epe.2022.142006

Abstract:
The present paper is about a contribution to the bifacial PV cell performances improvement. The PV cell efficiency is weak compared to the strong energy demand. In this study, the base thickness impacts and the p+ zone size influence are evaluated on the rear face of the polycrystalline back surface field bifacial silicon PV cell. The photocurrent density and photovoltage behaviors versus thickness of these regions are studied. From a three-dimensional grain of the polycrystalline bifacial PV cell, the magneto-transport and continuity equations of excess minority carriers are solved to find the expression of the density of excess minority carriers and the related electrical parameters, such as the photocurrent density, the photovoltage and the electric power for simultaneous illumination on both sides. The photocurrent density, the photovoltage and electric power versus junction dynamic velocity decrease for different thicknesses of base and the p+ region increases for simultaneous illumination on both sides. It is found that the thickness of the p+ region at 0.1 μm and the base size at 100 μm allow reaching the best bifacial PV cell performances. Consequently, it is imperative to consider the reduction in the thickness of the bifacial PV cell for exhibition of better performance. This reduced the costs and increase production speed while increasing conversion efficiency.
Jacques Nébié, Sidiki Zongo, Guy C. Tubreoumya, Augustin S. Zongo, Ilyassé Konkobo, Boubou Bagré, Ali Diané, Tizane Daho, Serges W. Igo, Belkacem Zeghmati, et al.
Energy and Power Engineering, Volume 14, pp 124-132; https://doi.org/10.4236/epe.2022.142005

Abstract:
Solar cookers are a good option in developing countries with high solar potential for environmentally friendly cooking and reduced pressure on forests. However, they are still affected by the intermittency of the sun. In order to overcome this problem, in this work, a box type solar cooker integrated Jatropha oil as a heat storage material is fabricated and experimented with. The design was examined with a maximum stagnation temperature of 157.7°C. The recorded cooking power vanished between 78.4 and 103.6 W, while thermal efficiency varied from 41.26% to 58.78%. The energy transfer cycle test, including charge and discharge revealed that 91.18% of the heat lost through the cooker could be recovered by the heat storage unit and a large amount is restored to the system during cloudiness or a temperature perturbation.
Back to Top Top