Journal for ImmunoTherapy of Cancer

Journal Information
ISSN / EISSN : 2051-1426 / 2051-1426
Published by: BMJ (10.1136)
Total articles ≅ 4,094
Current Coverage
SCOPUS
SCIE
LOCKSS
MEDICUS
MEDLINE
PUBMED
PMC
DOAJ
Archived in
EBSCO
SHERPA/ROMEO
Filter:

Latest articles in this journal

, Vetri Sudar Jayaprakasam, Katherine S Panageas, Margaret Callahan, , , Jedd D Wolchok, Allison Betof Warner
Published: 26 October 2021
by BMJ
Journal for ImmunoTherapy of Cancer, Volume 9; https://doi.org/10.1136/jitc-2021-003395

Abstract:
In melanoma patients who progress after prior ipilimumab/nivolumab (ipi/nivo) combination immunotherapy, there is no information regarding the risks and benefits of reinduction ipi/nivo. This was a retrospective review of 26 melanoma patients treated at Memorial Sloan Kettering Cancer Center (MSKCC) since 2012 who received reinduction ipi/nivo at least 6 months following completion of an initial course of ipi/nivo. We collected data on demographics, genetics, immune-related adverse events (irAEs), best overall responses (BORs), time to treatment failure (TTF) and overall survival (OS). The BOR rate (complete response+partial response) was 74% (95% CI 52% to 90%) after the first course of ipi/nivo but only 23% (95% CI 8% to 45%)) after reinduction. Response to reinduction did not correlate with response to the initial course. Among the 16 patients who had an objective response to the first course, only four (25%) responded to reinduction. Of five patients who did not respond to the first course, one responded to reinduction. For all patients, median TTF was 5.3 months after reinduction; TTF was shorter for reinduction than for the first course in 85% of patients. Median OS from reinduction was 8.4 months; estimated 2-year OS was 18%. Although reinduction was associated with fewer irAEs than the initial course of ipi/nivo (58% of patients vs 85% of patients in the initial course), eight (31%) patients experienced at least one new irAE after the second course. BOR rate and TTF were markedly less favorable after reinduction with ipi/nivo than after the initial course of ipi/nivo. Reinduction ipi/nivo was associated with frequent irAEs although less frequent than for the initial course.
Yiqi Xu, ZhenYue Gao, Ruxin Hu, Yuqing Wang, Yuhong Wang, Zheng Su, Xiaoyue Zhang, Jingxuan Yang, Mei Mei, Yu Ren, et al.
Published: 25 October 2021
by BMJ
Journal for ImmunoTherapy of Cancer, Volume 9; https://doi.org/10.1136/jitc-2021-002699

Abstract:
Combination therapy has been explored for advanced head and neck squamous cell carcinoma (HNSCC) owing to the limited efficacy of anti-epidermal growth factor receptor (EGFR) therapy. Increased expression and glycosylation of immune checkpoint molecules in tumors are responsible for cetuximab therapy refractoriness. The role of programmed death ligand 2 (PD-L2), a ligand of PD-1, in the immune function is unclear. Here, we examined the regulatory mechanism of PD-L2 glycosylation and its role in antitumor immunity and cetuximab therapy. Single-cell RNA sequencing and immunohistochemical staining were used to investigate PD-L2 expression in cetuximab-resistant/sensitive HNSCC tissues. The mechanism of PD-L2 glycosylation regulation was explored in vitro. The effects of PD-L2 glycosylation on immune evasion and cetuximab efficacy were verified in vitro and using mice bearing orthotopic SCC7 tumors. The PD-L2 levels were elevated and N-glycosylated in patients with cetuximab-resistant HNSCC. Glycosylated PD-L2 formed a complex with EGFR, which resulted in the activation of EGFR/signal transducer and activator of transcription 3 (STAT3) signaling and decreased the cetuximab binding affinity to EGFR. The N-glycosyltransferase fucosyltransferase (FUT8), a transcriptional target of STAT3, was required for PD-L2 glycosylation. Moreover, glycosylation modification stabilized PD-L2 by blocking ubiquitin-dependent lysosomal degradation, which consequently promoted its binding to PD-1 and immune evasion. Inhibition of PD-L2 glycosylation using Stattic, a specific STAT3 inhibitor, or PD-L2 mutation blocking its binding to FUT8, increased cytotoxic T lymphocyte activity and augmented response to cetuximab. Increased expression and glycosylation of PD-L2 in tumors are an important mechanism for cetuximab therapy refractoriness. Thus, the combination of PD-L2 glycosylation inhibition and cetuximab is a potential therapeutic strategy for cancer.
, Jossie Rotman, Sanne Samuels, Henry J M A A Zijlmans, Guus Fons, , Maaike C G Bleeker, Gemma G Kenter, Ekaterina J Jordanova, Tanja D de Gruijl
Published: 25 October 2021
by BMJ
Journal for ImmunoTherapy of Cancer, Volume 9; https://doi.org/10.1136/jitc-2021-003623

Abstract:
Therapeutic immune intervention is highly dependent on the T-cell priming and boosting capacity of tumor-draining lymph nodes (TDLN). In vulvar cancer, in-depth studies on the immune status of (pre)metastatic TDLN is lacking. We have phenotyped and enumerated various T-cell and myeloid subsets in tumor-free (LN−, n=27) and metastatic TDLN (LN+, n=11) using flow cytometry. Additionally, we studied chemokine and cytokine release profiles and assessed expression of indoleamine 2,3-dioxygenase (IDO) in relation to plasmacytoid dendritic cell (pDC) or myeloid subsets. Metastatic involvement of TDLN was accompanied by an inflamed microenvironment with immune suppressive features, marked by hampered activation of migratory DC, increased cytokine/chemokine release, and closely correlated elevations of pDC and LN-resident conventional DC (LNR-cDC) activation state and frequencies, as well as of terminal CD8+ effector-memory T-cell (TemRA) differentiation, regulatory T-cell (Treg) rates, T-cell activation, and expression of cytotoxic T-lymphocyte protein-4 (CTLA-4) and programmed cell death protein-1 (PD-1) immune checkpoints. In addition, high indoleamine 2,3-dioxygenase (IDO) expression and increased frequencies of monocytic myeloid-derived suppressor cells (mMDSC) were observed. Correlation analyses with primary and metastatic tumor burden suggested respective roles for Tregs and suppression of inducible T cell costimulator (ICOS)+ T helper cells in early metastatic niche formation and for CD14+ LNR-cDC and terminal T-cell differentiation in later stages of metastatic growth. Metastatic spread in vulvar TDLN is marked by an inflamed microenvironment with activated effector T cells, which are likely kept in check by an interplay of suppressive feedback mechanisms. Our data support (neoadjuvant) TDLN-targeted therapeutic interventions based on CTLA-4 and PD-1 blockade, to reinvigorate memory T cells and curb early metastatic spread and growth.
, Sofiya Latifyan, Craig Fenwick, Hasna Bouchaab, Madeleine Suffiotti, Javid J Moslehi, , , , Julien Costes, et al.
Published: 22 October 2021
by BMJ
Journal for ImmunoTherapy of Cancer, Volume 9; https://doi.org/10.1136/jitc-2021-003594

Abstract:
Immune checkpoint inhibitor (ICI)-related myocarditis is a rare but potentially fatal adverse event that can occur following ICI exposure. Early diagnosis and treatment are key to improve patient outcomes. Somatostatin receptor-based positron emission tomography–CT (PET/CT) showed promising results for the assessment of myocardial inflammation, yet information regarding its value for the diagnosis of ICI-related myocarditis, especially at the early stage, is limited. Thus, we investigated the value of 68Ga-DOTA(0)-Phe(1)-Tyr(3)-octreotide (68Ga-DOTATOC) PET/CT for the early detection and diagnosis of ICI-related myocarditis. Consecutive patients with clinically suspected ICI-related myocarditis from July 2018 to February 2021 were retrospectively evaluated in this single-center study. All patients underwent imaging for the detection of ICI-related myocarditis using either cardiac magnetic resonance (CMR) imaging or 68Ga-DOTATOC PET/CT. PET/CT images were acquired 90 min after the injection of 2 MBq/kg 68Ga-DOTATOC with pathological myocardial uptake in the left ventricle (LV) suggestive of myocarditis defined using a myocardium-to-background ratio of peak standard uptake value to mean intracavitary LV standard uptake (MBRpeak) value above 1.6. Patients had a full cardiological work-up including ECG, echocardiography, serum cardiac troponin I (cTnI), cardiac troponin T and creatine kinase (CK), CK-MB. Endomyocardial biopsy and inflammatory cytokine markers were also analyzed. The detection rate of ICI-related myocarditis using 68Ga-DOTATOC PET/CT and CMR was assessed. A total of 11 patients had clinically suspected ICI-related myocarditis; 9 underwent 68Ga -DOTATOC PET/CT. All nine (100%) patients with 68Ga-DOTATOC PET/CT presented with pathological myocardial uptake in the LV that was suggestive of myocarditis (MBRpeak of 3.2±0.8, range 2.2–4.4). Eight patients had CMR imaging and 3/8 (38%) patients had lesions evocative of myocarditis. All PET-positive patients were previously treated with a high dose of steroids and intravenous immunoglobulin prior to PET/CT had elevated serum cTnI except for one patient for whom PET/CT was delayed several days. Interestingly, in 5/6 (83%) patients who presented with concomitant myositis, pathological uptake was seen on whole-body 68Ga-DOTATOC PET/CT images in the skeletal muscles, suggesting an additional advantage of this method to assess the full extent of the disease. In contrast, four patients with CMR imaging had negative findings despite having elevated serum cTnI levels (range 20.5–5896.1 ng/mL), thus defining possible myocarditis. Newly identified immune correlates could provide specific biomarkers for the diagnosis of ICI-related myocarditis. Most tested patients (six of seven patients) had serum increases in the inflammatory cytokine interleukin (IL)-6 and in the chemokines CXCL9, CXCL10, and CXCL13, and the mass cytometry phenotypes of immune cell populations in the blood also showed correlations with myocardial inflammation. Four of five patients with myocarditis exhibited a Th1/Th2 imbalance favoring a pronounced inflammatory Th1, Th1/Th17, and Th17 CD4 memory T-cell response. The high proportion of non-classical monocytes and significantly reduced levels of CD31 in four to five patients was also consistent with an inflammatory disease. The use of 68Ga-DOTATOC PET/CT along with immune correlates is a highly sensitive method to detect ICI-related myocarditis especially in the early stage of myocardial inflammation, as patients with elevated cTnI may present normal CMR imaging results. 68Ga-DOTATOC PET/CT is also useful for detecting concomitant myositis. These results need to be confirmed in a larger population of patients and validated against a histological gold standard if available.
Victoria M Leb-Reichl, Melanie Kienzl, Anna Kaufmann, Angelika Stoecklinger, Birgit Tockner, Sophie Kitzmueller, Nadja Zaborsky, Markus Steiner, Gabriele Brachtl, Lisa Trattner, et al.
Published: 21 October 2021
by BMJ
Journal for ImmunoTherapy of Cancer, Volume 9; https://doi.org/10.1136/jitc-2020-002170

Abstract:
Viral antigens are among the strongest elicitors of immune responses. A significant proportion of the human population already carries pre-existing immunity against several childhood viruses, which could potentially be leveraged to fight cancer. We sought to provide proof of concept in mouse models that a pre-existing measles virus (MeV) immunity can be redirected to inhibit tumor growth by directly forcing expression of cognate antigens in the tumor. To this end, we designed DNA vaccines against known MeV cytotoxic and helper T epitopes, and administered these intradermally to mice that were subsequently challenged with syngeneic squamous cancer cells engineered to either express the cognate antigens or not. Alternatively, established wild-type tumors in vaccinated animals were treated intratumorally with in vitro transcribed mRNA encoding the cognate epitopes. Vaccination generated MeV cytotoxic T lymphocyte (CTL) immunity in mice as demonstrated by enhanced interferon gamma production, antigen-specific T cell proliferation, and CTL-mediated specific killing of antigen-pulsed target cells. When challenged with syngeneic tumor cells engineered to express the cognate antigens, 77% of MeV-vaccinated mice rejected the tumor versus 21% in control cohorts. Antitumor responses were largely dependent on the presence of CD8+ cells. Significant protection was observed even when only 25% of the tumor bulk expressed cognate antigens. We therefore tested the strategy therapeutically, allowing tumors to develop in vaccinated mice before intratumoral injection with Viromer nanoparticles complexed with mRNA encoding the cognate antigens. Treatment significantly enhanced overall survival compared with controls, including complete tumor regression in 25% of mice. Our results indicate that redirecting pre-existing viral immunity to fight cancer is a viable alternative that could meaningfully complement current cancer immune therapies such as personalized cancer vaccines and checkpoint inhibitor blockade.
Qiang-Wei Wang, Li-Hua Sun, Ying Zhang, Zheng Wang, Zheng Zhao, Zhi-Liang Wang, Kuan-Yu Wang, Guan-Zhang Li, Jian-Bao Xu, Chang-Yuan Ren, et al.
Published: 19 October 2021
by BMJ
Journal for ImmunoTherapy of Cancer, Volume 9; https://doi.org/10.1136/jitc-2021-002451

Abstract:
Background Dysregulated receptor tyrosine kinases, such as the mesenchymal-epidermal transition factor (MET), have pivotal role in gliomas. MET and its interaction with the tumor microenvironment have been previously implicated in secondary gliomas. However, the contribution of MET gene to tumor cells’ ability to escape immunosurveillance checkpoints in primary gliomas, especially in glioblastoma (GBM), which is a WHO grade 4 glioma with the worst overall survival, is still poorly understood. Methods We investigated the relationship between MET expression and glioma microenvironment by using multiomics data and aimed to understand the potential implications of MET in clinical practice through survival analysis. RNA expression data from a total of 1243 primary glioma samples (WHO grades 2–4) were assembled, incorporating The Cancer Genome Atlas, Chinese Glioma Genome Atlas, and GSE16011 data sets. Results Pearson’s correlation test from the three data sets indicated that MET showed a robust correlation with programmed death-ligand 1 (PD-L1) and STAT pathways. Western blot analysis revealed that in GBM cell lines (N33 and LN229), PD-L1 and phosphorylated STAT4 were upregulated by MET activation treatment with hepatocyte growth factor and were downregulated on MET suppression by PLB-1001. Tumor tissue microarray analysis indicated a positive correlation between MET and PD-L1 and macrophage-associated markers. Chromatin immunoprecipitation-PCR assay showed enrichment of STAT4 in the PD-L1 DNA. Transwell co-culture and chemotaxis assays revealed that knockdown of MET in GBM cells inhibited macrophage chemotaxis. Moreover, we performed CIBERSORTx and single-cell RNA sequencing data analysis which revealed an elevated number of macrophages in glioma samples with MET overexpression. Kaplan-Meier survival analysis indicated that activation of the MET/STAT4/PD-L1 pathway and upregulation of macrophages were associated with shorter survival time in patients with primary GBM. Conclusions These data indicated that the MET-STAT4-PD-L1 axis and tumor-associated macrophages might enforce glioma immune evasion and were associated with poor prognosis in GBM samples, suggesting potential clinical strategies for targeted therapy combined with immunotherapy in patients with primary GBM.
Maria Rain Jennings, David Munn,
Published: 19 October 2021
by BMJ
Journal for ImmunoTherapy of Cancer, Volume 9; https://doi.org/10.1136/jitc-2021-003013

Abstract:
Tumors accumulate metabolites that deactivate infiltrating immune cells and polarize them toward anti-inflammatory phenotypes. We provide a comprehensive review of the complex networks orchestrated by several of the most potent immunosuppressive metabolites, highlighting the impact of adenosine, kynurenines, prostaglandin E2, and norepinephrine and epinephrine, while discussing completed and ongoing clinical efforts to curtail their impact. Retrospective analyses of clinical data have elucidated that their activity is negatively associated with prognosis in diverse cancer indications, though there is a current paucity of approved therapies that disrupt their synthesis or downstream signaling axes. We hypothesize that prior lukewarm results may be attributed to redundancies in each metabolites’ synthesis or signaling pathway and highlight routes for how therapeutic development and patient stratification might proceed in the future.
Carlo Sorrentino, Stefania Livia Ciummo, Luigi D'Antonio, Cristiano Fieni, Paola Lanuti, Alice Turdo, Matilde Todaro,
Published: 18 October 2021
by BMJ
Journal for ImmunoTherapy of Cancer, Volume 9; https://doi.org/10.1136/jitc-2021-002966

Abstract:
Background Breast cancer (BC) progression to metastatic disease is the leading cause of death in women worldwide. Metastasis is driven by cancer stem cells (CSCs) and signals from their microenvironment. Interleukin (IL) 30 promotes BC progression, and its expression correlates with disease recurrence and mortality. Whether it acts by regulating BCSCs is unknown and could have significant therapeutic implications. Methods Human (h) and murine (m) BCSCs were tested for their production of and response to IL30 by using flow cytometry, confocal microscopy, proliferation and sphere-formation assays, and PCR array. Immunocompetent mice were used to investigate the role of BCSC-derived IL30 on tumor development and host outcome. TCGA PanCancer and Oncomine databases provided gene expression data from 1084 and 75 hBC samples, respectively, and immunostaining unveiled the BCSC microenvironment. Results hBCSCs constitutively expressed IL30 as a membrane-anchored glycoprotein. Blocking IL30 hindered their proliferation and self-renewal efficiency, which were boosted by IL30 overexpression. IL30 regulation of immunity gene expression in human and murine BCSCs shared a significant induction of IL23 and CXCL10. Both immunoregulatory mediators stimulated BCSC proliferation and self-renewal, while their selective blockade dramatically hindered IL30-dependent BCSC proliferation and mammosphere formation. Orthotopic implantation of IL30-overexpressing mBCSCs, in syngeneic mice, gave rise to poorly differentiated and highly proliferating MYC+KLF4+LAG3+ tumors, which expressed CXCL10 and IL23, and were infiltrated by myeloid-derived cells, Foxp3+ T regulatory cells and NKp46+RORγt+ type 3 innate lymphoid cells, resulting in increased metastasis and reduced survival. In tumor tissues from patients with BC, expression of IL30 overlapped with that of CXCL10 and IL23, and ranked beyond the 95th percentile in a Triple-Negative enriched BC collection from the Oncomine Platform. CIBERSORTx highlighted a defective dendritic cell, CD4+ T and γδ T lymphocyte content and a prominent LAG3 expression in IL30high versus IL30low human BC samples from the TCGA PanCancer collection. Conclusions Constitutive expression of membrane-bound IL30 regulates BCSC viability by juxtacrine signals and via second-level mediators, mainly CXCL10 and IL23. Their autocrine loops mediate much of the CSC growth factor activity of IL30, while their paracrine effect contributes to IL30 shaping of immune contexture. IL30-related immune subversion, which also emerged from computational analyses, strongly suggests that targeting IL30 can restrain the BCSC compartment and counteract BC progression.
Sumit K Subudhi, , Ana M Aparicio, Shalini S Yadav, Sreyashi Basu, Hong Chen, Sonali Jindal, Rebecca S S Tidwell, Ashwin Varma, Christopher J Logothetis, et al.
Published: 18 October 2021
by BMJ
Journal for ImmunoTherapy of Cancer, Volume 9; https://doi.org/10.1136/jitc-2021-002919

Abstract:
Background Immune checkpoint therapy (ICT) has low response rates in patients with metastatic castration-resistant prostate cancer (mCRPC), in part due to few T cells in the tumor microenvironment (TME). Anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) promotes intratumoral T cell infiltration but induces upregulation of PD-1 and programmed death ligand-1 (PD-L1) within the prostate TME. Combined anti-CTLA-4 plus anti-PD-1 can partly overcome this adaptive resistance and was recently shown to augment responses in patients with mCRPC with measurable disease. Although bone is the most common site of metastasis in prostate cancer, patients with bone-predominant disease are frequently excluded from trials because they lack measurable disease, which limits assessment of disease progression and tissue sampling. We therefore designed this study to investigate combined ICT in mCRPC to bone. Hypothesis Combined anti-CTLA-4 (tremelimumab) plus anti-PD-L1 (durvalumab) is safe and well tolerated in patients with chemotherapy-naïve mCRPC to bone. Patients and methods In this single-arm pilot study, men with chemotherapy-naïve mCRPC to bone received tremelimumab (75 mg intravenous) plus durvalumab (1500 mg intravenous) every 4 weeks (up to four doses), followed by durvalumab (1500 mg intravenous) maintenance every 4 weeks (up to nine doses). The primary endpoint was incidence of adverse events. Secondary endpoints included serum prostate-specific antigen (PSA), progression-free survival (PFS), radiographic PFS (rPFS), and maximal PSA decline. Results Twenty-six patients were treated between August 8, 2017 and March 28, 2019. Grade ≥3 treatment-related adverse events (TRAEs) occurred in 11 patients (42%), with no grade 4 or 5 events. TRAEs leading to discontinuation occurred in three patients (12%). PSA decline ≥50% occurred in three patients (12%). Six patients (24%) achieved stable disease for >6 months. At a median follow-up of 43.6 months, median rPFS was 3.7 months (95% CI: 1.9 to 5.7), and median overall survival was 28.1 months (95% CI: 14.5 to 37.3). Post-treatment evaluation of the bone microenvironment revealed transcriptional upregulation in myeloid and neutrophil immune subset signatures and increased expression of inhibitory immune checkpoints. Conclusions Tremelimumab plus durvalumab was safe and well tolerated in patients with chemotherapy-naïve mCRPC to bone, with potential activity in a small number of patients as measured by rPFS. Combination of CTLA-4 and PD-L1 blockade with therapies targeting the myeloid compartment or other inhibitory immune receptors may be necessary to overcome mechanisms of resistance within prostate bone microenvironment. Trial registration number NCT03204812.
Back to Top Top