Jurnal Kimia Sains dan Aplikasi

Journal Information
ISSN / EISSN : 1410-8917 / 2597-9914
Published by: Diponegoro University (10.14710)
Total articles ≅ 561
Current Coverage
DOAJ
Archived in
SHERPA/ROMEO
Filter:

Latest articles in this journal

, Fadjrin Nur Rahmayani, Khabibi Khabibi
Jurnal Kimia Sains dan Aplikasi, Volume 25, pp 161-168; https://doi.org/10.14710/jksa.25.4.161-168

Abstract:
Ionic imprinted membrane (IIM) was successfully synthesized using sulfonated polyeugenol, a derivative of eugenol as a functional polymer, with PVA as a base membrane and PEGDE as a crosslinker. IIM Au(III) is a membrane with an Au(III) ion template. This study aimed to determine the pH effect of a feed phase for selective transport of IIM Au(III), comparing it with a non-imprinted membrane (NIM) against Au3+ metal ions from motherboard waste. It also aimed to compare the membrane selectivity of Au3+ metal ions to Cu2+ metal ions, which are also found in motherboard waste. Gold samples were prepared using H(AuCl4) standard and leaching solutions from motherboard waste. The leaching of the motherboard used aqua regia and the assistance of a microwave to accelerate the leaching process. The optimum transport of Au3+ metal ions was when using IIM Au(III) at pH 3. This proved that the presence of a template affected IIM Au(III) to recognize Au(III) ions. IIM Au(III) showed higher selectivity than NIM, as evidenced by the percentage in the receiving phase of the Au3+ metal ions, which was more significant than the Cu2+ metal ions from the motherboard leaching solution.
, Devianri M, Nurul Afiatun Hasanah, Dyah Fitriani, Doni Notriawan, Deni Agus Triawan
Jurnal Kimia Sains dan Aplikasi, Volume 25, pp 155-160; https://doi.org/10.14710/jksa.25.4.155-160

Abstract:
Immunomodulators are an essential part of the prevention process for treating various diseases related to the body’s immune system. This study aimed to determine the immunomodulatory activity of virgin coconut oil (VCO) with and without the enzyme bromelain in pineapple waste extract on the proliferation of mice lymphocyte cells through an in vitro test. VCO was made using two methods: enzymatic using bromelain enzyme (VCOb) from pineapple waste with 10, 25, and 50%, and mixing method without bromelain enzyme (VCOm). The two types of VCO produced were calculated for the yield, moisture content, free fatty acids (FFA), and physicochemical properties. For immunomodulatory activity, the test solution was taken from VCOb and VCOm with a variation concentration of 6.25, 12.5, 25, 50, and 100 µg/mL. Isolation of lymphocyte cells was obtained from the spleen organ of Swiss Webster strain mice which was performed aseptically with a ketamine-xylazine anesthetic. The lymphocyte cell proliferation test was performed using the MTT Assay, and the Optical Density was measured using a microplate reader at 550 nm. The results showed that 50% VCOb produced the highest yield and 22.22% higher than VCOm. However, the results showed that increasing bromelain enzyme concentration would increase the moisture content and free fatty acid content, but still below 0.2%. The VCOb and VCOm had immunomodulatory activity against mice lymphocyte cell proliferation. However, the immunomodulatory activity of VCO with bromelain enzyme from pineapple waste extract (VCOb) was higher than without bromelain enzyme (VCOm). The highest immunomodulatory activity was obtained at 100 µg/mL of VCOb with a percentage increase of 158.26% compared to negative controls, followed by VCOm of 100 µg/mL with a percentage increase of 137.66% compared to negative controls. The optimum dose of VCOm and VCOb for increasing the proliferation of mice lymphocyte cells has not been found.
Nur Inayatullah, Tetty Kemala, Irma Herawati Suparto
Jurnal Kimia Sains dan Aplikasi, Volume 25, pp 146-154; https://doi.org/10.14710/jksa.25.4.146-154

Abstract:
Chitosan is a natural polymer that can be used as wound dressing material; however, it has rigid and brittle properties. A combination of chitosan and polyvinyl alcohol (PVA) is expected to allow improvement of chitosan’s mechanical properties. Green grass jelly leaf (Cyclea barbarta M.) and moringa leaf (Moringa oleifera L.) have antibacterial compounds that can be added to the chitosan-PVA composite membrane. The purpose of the research was to develop and characterize the chitosan-PVA composite membrane with the addition of green grass jelly leaf and moringa leaf extracts to enhance the antibacterial activity of the membranes that have potential as a wound dressing. Both extracts with various composition volumes (75:25, 50:50, and 25:75) were tested for antibacterial activities against S. aureus and E. coli. Chitosan-PVA composite membrane with the volume ratios of 5:5, 6:4, and 7:3 was added with extract with the highest antibacterial activity. The composites were characterized for density, water vapor permeability, tensile strength, elongation, Fourier Transform Infrared spectroscopy, and Scanning Electron Microscope. The most significant inhibition zone was shown by an extract ratio of 50:50 against S. aureusand E. coli, 13.00±1.17 mm and 7.00±0.17 mm, respectively. Composite membrane with the addition of extract had a larger inhibition zone against S. aureus(9.75±0.75 mm) and E. coli (7.50±0.65 mm) than without extract. Chitosan-PVA(5:5)+extract membrane showed excellent density and water vapor permeability compared to other membrane ratio compositions. Mechanically, the addition of extract decreased the tensile strength and elongation of the membranes; however, it still complied with the medical material standard criteria. The characterization for functional groups showed that chitosan-PVA+extract generated the N-H group peak with two wavenumbers expressed as overlapping amides with amines and protonated amines. The SEM analysis showed that the addition of extract was not distributed homogeneously on the membrane surface.
, Marta Chandra Anikke Putri, Hanifa Zakiyatul Urbach, , ,
Jurnal Kimia Sains dan Aplikasi, Volume 25, pp 137-145; https://doi.org/10.14710/jksa.25.4.137-145

Abstract:
Silica-rich sodalite zeolite has been synthesized by ultrasound treatment and hydrothermal temperature variation. This study aimed to determine the effect of ultrasound treatment and hydrothermal temperature variations on the crystallinity, hydrophobicity, and structural properties of silica-rich sodalite zeolite. The synthesis was conducted by reacting a sodium aluminate and sodium silicate solution by varying Si/Al ratios of 20, 30, 40, 60, 80, and 90. The next step was to characterize the product. The product with the best crystallinity was used as a reference to determine the effect of ultrasound and hydrothermal temperature. The reaction gel was treated with and without ultrasound and hydrothermal using autoclave at 100, 150, and 200°C for 24 hours. The last step was the product characterization using XRD, FTIR, and GSA. The XRD showed similarity peaks at 2θ = 14.058°; 24.41°; 31.73°; 34.75°; 42.88°. The best crystallinity was silica-rich sodalite zeolite with a Si/Al ratio of 30. Meanwhile, silica-rich sodalite zeolite peaks were obtained at 2θ = 14.16°, 24.66°, 31.99°, 35.13°, and 43.39° by ultrasound treatment and hydrothermal temperature variation (100, 150, and 200°C). Ultrasound treatment revealed the presence of other peaks besides sodalite at 2θ = 19.05° and 27°, where these peaks were referred to as SAPO-56. In conclusion, the degree of crystallinity increased with increasing temperature, decreasing Si-OH/Si-O-Si showed increased hydrophobic properties. Increasing the hydrothermal temperature of 150 and 200°C with and without ultrasound treatment increased the surface area significantly to 114.137 m2/g and 160.717 m2/g, and the pore volume of sodalite with a Si/Al ratio of 30 to 0.318 cc/g and 0.274 cc/g.
Jurnal Kimia Sains dan Aplikasi, Volume 25, pp 130-136; https://doi.org/10.14710/jksa.25.3.130-136

Abstract:
This study investigated the effects of additional PVA on the physicochemical properties of the chitosan-glutaraldehyde/gelatin bioplastic composite. The best results of the bioplastic film were obtained at a concentration of 3% PVA, with a tensile strength value of 3.3 MPa, flexibility reached 54%, a thickness value of 0.24 mm, percentage of inhibition against E. coli and S. aureus was 21.8% and 8.8% respectively. The FTIR spectrum results showed no change in the wavenumber of the chitosan and gelatin chitosan spectrum with OH, CO, and NH functional groups. The spectrum indicates that only physical interactions occurred. The bioplastics are similar in thermal stability and have slight differences in bioplastic morphological contours. The average thickness of the bioplastics is between 0.20–0.26 mm. Based on the Japanese Industrial Standard (JIS), all bioplastics meet the standard thickness, which is < 0.25 mm, excluding chitosan, which has a thickness of 0.26 mm. The addition of PVA into the bioplastics structure increased the hydrophobicity, pH resistance, and flexibility of bioplastics. Meanwhile, additional PVA decreased biodegradability, only degraded by 60% at eight weeks. Based on these data, not all bioplastics can meet the degradation time criteria set by the international bioplastic standard ASTM D-6002, that bioplastics must be 100% degraded within eight weeks. Bioplastics made from chitosan and chitosan-gelatin have been degraded by 90% for 48 weeks. Based on the antibacterial properties, the inclusion of PVA into the bioplastic structure enhances the antibacterial properties.
Joana Sugiarto, Zayyani Trianti Fatmasari, Sugiyani Puji Lestari,
Jurnal Kimia Sains dan Aplikasi, Volume 25, pp 108-115; https://doi.org/10.14710/jksa.25.3.108-115

Abstract:
Anthocyanins as chemosensory compounds for amines have been tested in this study. Because anthocyanins are sensitive to pH changes, while amines have an alkaline nature, they can cause structural changes in anthocyanins, resulting in changes in the color of anthocyanins. The source of anthocyanins was the Kepok banana bracts (Musa paradisiaca L.), which were extracted using a mixture of ethanol:HCl 0.15% (3:2). The types of anthocyanin compounds were characterized using a UV-Vis spectrophotometer. The anthocyanin content obtained varied from 1.26 mg/100 g to 5.08 mg/100 g. The type of anthocyanin in the Kepok banana bracts was found as a cyanidin-3-rutinoside with maximum absorption at 513 nm at pH 1. The color of anthocyanin extract varied with changes in pH; it turned red in acid and faded in neutral solutions. The green color in the alkaline solution changes to brownish-yellow was associated with anthocyanin degradation. The color change at different pH indicates that banana bracts are regarded as a potential chemosensory compound to detect tuna freshness. The chemosensor was applied to a cellulose-based strip and exhibited a color change that corresponded to the increase in pH and was comparable to the results of the pH meter measurement. The structural changes of anthocyanin before and after the tuna freshness test were identified by the FTIR-ATR, indicating a change in the anthocyanin structure. Tuna freshness began to diminish after being stored for 12 and 24 hours at room temperature, marked by a color change of the paper strip to colorless and blackish gray.
, Richa Mardianingrum,
Jurnal Kimia Sains dan Aplikasi, Volume 25, pp 87-96; https://doi.org/10.14710/jksa.25.3.87-96

Abstract:
Cancer is a disease that starts from the uncontrolled growth of abnormal cells in the organs or tissues of the body, which is the second leading cause of death in the world. One of the targets in discovering and developing anticancer drugs is Sirtuin-1. SIRT1 can act as a tumor suppressor or tumor promoter depending on its target in a particular signalling pathway or on particular cancer. This study aimed to study the interaction of a thiourea derivative with SIRT1 (PDB ID:4I5I) through its inhibition of histone deacetylase. Research has been carried out in silico with molecular docking (MGLTools.1.5.6) and molecular dynamics (Desmond 2019) of three thiourea derivatives to the receptor. In addition, pharmacokinetic parameters, toxicity, and selection of Lipinski's Rule of Five were also tested. Molecular docking results showed that compound b ([2-(methylcarbamothioylcarbamoyl)phenyl]benzoate) had the lowest ∆G value of −9.29 kcal/mol with a KI value of 0.156 µM compared to other thiourea derivatives and was proven by molecular dynamics tests for 30 ns and amino acids that play an active role in the interaction include the residue PheA:297. In terms of pharmacokinetics and toxicity, compound b is better than natural ligands. Compound b is predicted to be used as an anticancer candidate through further research.
Zatta Yumni Ihdhar Syarafina, Mega Safithri, Maria Bintang, Rini Kurniasih
Jurnal Kimia Sains dan Aplikasi, Volume 25, pp 97-107; https://doi.org/10.14710/jksa.25.3.97-107

Abstract:
Alzheimer’s is a progressive and neurodegenerative disease that mainly affects people aged 65 years and older. The pathophysiology of Alzheimer’s is possibly related to the depletion of the neurotransmitter acetylcholine (ACh) due to beta-amyloid plaques and neurofibrillary tangles. Secondary metabolites found in cinnamon bark (Cinnamomum burmannii) have the potential as anticholinesterases to treat Alzheimer’s symptoms. This study aimed to identify the potency of bioactive compounds from cinnamon bark as AChE inhibitors in silico through analysis of binding energy, inhibition constants, and types of interactions. The research was conducted by screening virtually 60 test ligands using the PyRx program and molecular docking using the Autodock Tools program. The results of the ligand-receptor interaction analysis showed that 12 of the 15 tested ligands had potential as AChE inhibitors. Epicatechin and medioresinol are the ligands with the best potential for AChE inhibition with affinity close to the natural ligand or donepezil. Epicatechin has a binding energy of −10.0 kcal/mol and inhibition constant of 0.0459 M, with four hydrogen bonds and seven hydrophobic bonds. Meanwhile, medioresinol has −9.9 kcal/mol binding energy and inhibition constant of 0.0543 M, with one hydrogen bond and thirteen hydrophobic bonds.
Lidwina Angelica Soetantijo, , Heriyanto Heriyanto, Mitha Ayu Pratama Handojo,
Jurnal Kimia Sains dan Aplikasi, Volume 25, pp 49-55; https://doi.org/10.14710/jksa.25.2.49-55

Abstract:
The headspace solid phase microextraction (HS-SPME) technique has been recognized as a reliable technique for characterizing the aroma profile of Arabica coffee beans. The amount and content of the detected volatile compounds depend on the volatile analyte extraction process with HS-SPME, namely the adsorption and desorption processes. However, the optimal extraction time in applying coffee volatile compounds is still limited. This research aimed to obtain the optimum adsorption and desorption time in analyzing volatile compounds in brewed Java Arabica coffee. The adsorption time was optimized for 20 to 60 minutes with 5 minutes desorption time. The desorption time was optimized from 5 to 45 minutes with a 20 minutes of adsorption time. There are 14 volatile compounds with a peak area percentage of more than 2% from adsorption and desorption optimization. The optimal adsorption time was 50 minutes, where there were 5 of 7 compounds with the most significant area, such as 2-furfural (29%), 2-acetyl furan (3%), 2-furfuryl acetate (6%), 5-methyl furfural (12%), and 2-furfuryl alcohol (14%). Meanwhile, the most optimal desorption time was 5 minutes which detected 12 compounds, while the other desorption time only detected eight compounds. Furfuryl formate (2%), pyridine (12%), and 2-furfuryl alcohol (14%) had a higher peak area than the other compounds at a desorption time of 5 minutes. The results showed the same number of volatile compounds at each adsorption time. In conclusion, the adsorption time did not affect the number of compounds detected as in the optimization of desorption time. Adsorption and desorption time is crucial in analyzing volatile compounds from coffee using the HS-SPME/GC-MS technique.
Nanda Saridewi, Adelian Risa Adinda, Siti Nurbayti
Jurnal Kimia Sains dan Aplikasi, Volume 25, pp 116-122; https://doi.org/10.14710/jksa.25.3.116-122

Abstract:
The ability of cotton fabrics to absorb water creates several problems, such as providing an environment for bacterial growth. Antibacterial properties of textiles can be conducted by coating with nanoparticles with antibacterial activity. This study aimed to synthesize ZnO via green process nanoparticles using avocado seed extract (Persea americana), then characterize and evaluate its antibacterial activity on cotton fabrics. This research began with extracting avocado seed powder with distilled water. Then the avocado seed extract was mixed with Zn(CH3COO)2.2H2O and heated in a water bath at 70°C. The mixture was stirred while NaOH was added until the mixture reached pH 7, 8, and 9. The FTIR measurement of the avocado seed extract showed the presence of free hydroxyl and amino groups that act as reducing agents, capping agents, and stabilizers in the synthesis of ZnO nanoparticles. The XRD pattern of synthesized ZnO nanoparticles was hexagonal. The SEM results showed that the morphology of ZnO nanoparticles was spherical, with a particle size of 19.965 nm. Antibacterial activity was carried out on the cotton cloth coated with ZnO nanoparticles, resulting in an inhibition zone of 1.8 cm against E. coli and 1.97 cm against S. aureus bacteria. This study result indicated that ZnO nanoparticles have antibacterial activity by producing inhibition against E. coli and S. aureus.
Back to Top Top