Cell Death & Differentiation

Journal Information
ISSN / EISSN : 1350-9047 / 1476-5403
Published by: Springer Nature (10.1038)
Total articles ≅ 5,035
Current Coverage
SCOPUS
SCIE
MEDICUS
MEDLINE
PUBMED
PMC
Archived in
EBSCO
SHERPA/ROMEO
Filter:

Latest articles in this journal

Rameez Raja, Ganes C. Sen
Published: 20 September 2021
Cell Death & Differentiation pp 1-10; https://doi.org/10.1038/s41418-021-00870-4

Abstract:
Mammalian innate immune response to virus infection is meditated by many cell-intrinsic pathways. RNA viruses, such as Sendai virus, which replicate in the cytoplasm, trigger the RIG-I-like receptor pathway, which activates the transcription factor, IRF3. Activated IRF3 translocates to the nucleus and induces transcription of the genes which encode interferons, the major antiviral cytokines. Interestingly, IRF3 activates another interferon-independent antiviral pathway, called RIG-I induced pathway of apoptosis (RIPA). For activating RIPA, IRF3 translocates from the cytoplasm to mitochondria. RIPA requires linear polyubiquitination of IRF3 by the enzyme complex, LUBAC; ubiquitinated IRF3 binds to Bax and translocates it to mitochondria causing the release of Cytochrome C, activation of caspases and apoptosis of the infected cell. Here, we report that Otulin, the deubiquitinase that removes linear polyubiquitin chains, inhibits RIPA by deubiquitinating IRF3. Ablation of Otulin expression enhanced RIPA and its overexpression inhibited RIPA. In virus-infected cells, to overcome Otulin-mediated inhibition, RIPA actively degrades Otulin. This degradation required sequential actions of RIPA-activated Caspase 3 and proteasomes. Caspase 3 cleaved Otulin at D31; the D31A mutant was not cleaved at all. The caspase-cleaved fragment was totally degraded by proteasomes, which was preceded by its K48-linked ubiquitination. Mass spectrometric analysis of Otulin identified K64 and K197 as the ubiquitinated residues. Otulin interacted with LUBAC after virus infection and the E3-ubiquitin ligase, HOIP, a component of LUBAC, ubiquitinated Otulin to trigger its proteasome-mediated degradation. To assess the impact of Otulin degradation on RIPA-mediated antiviral action, we expressed, in Otulin-ablated cells, a non-degradable mutant of Otulin, in which D31, K64 and K197 had been mutated. The cells expressing the Otulin mutant were less susceptible to virus-induced apoptosis, because RIPA was less active, and consequently virus replication was more robust. Thus, our study has revealed an important positive feedback loop of RIPA.
Antonella Montinaro, Itziar Areso Zubiaur, Julia Saggau, Anna-Laura Kretz, Rute M. M. Ferreira, Omar Hassan, Ella Kitzig, Ines Müller, Mona A. El-Bahrawy, Silvia von Karstedt, et al.
Published: 17 September 2021
Cell Death & Differentiation pp 1-12; https://doi.org/10.1038/s41418-021-00869-x

Abstract:
Primary or acquired therapy resistance is a major obstacle to the effective treatment of cancer. Resistance to apoptosis has long been thought to contribute to therapy resistance. We show here that recombinant TRAIL and CDK9 inhibition cooperate in killing cells derived from a broad range of cancers, importantly without inducing detectable adverse events. Remarkably, the combination of TRAIL with CDK9 inhibition was also highly effective on cancers resistant to both, standard-of-care chemotherapy and various targeted therapeutic approaches. Dynamic BH3 profiling revealed that, mechanistically, combining TRAIL with CDK9 inhibition induced a drastic increase in the mitochondrial priming of cancer cells. Intriguingly, this increase occurred irrespective of whether the cancer cells were sensitive or resistant to chemo- or targeted therapy. We conclude that this pro-apoptotic combination therapy has the potential to serve as a highly effective new treatment option for a variety of different cancers. Notably, this includes cancers that are resistant to currently available treatment modalities.
, , Alessandra Fiore, Alessia Lamolinara, Cristina Frusteri, Francesco Domenico Del Pizzo, Francesco De Sanctis, Stefania Canè, Annalisa Adamo, Francesca Hofer, et al.
Published: 13 September 2021
Cell Death & Differentiation pp 1-19; https://doi.org/10.1038/s41418-021-00866-0

Abstract:
Inflammatory responses rapidly detect pathogen invasion and mount a regulated reaction. However, dysregulated anti-pathogen immune responses can provoke life-threatening inflammatory pathologies collectively known as cytokine release syndrome (CRS), exemplified by key clinical phenotypes unearthed during the SARS-CoV-2 pandemic. The underlying pathophysiology of CRS remains elusive. We found that FLIP, a protein that controls caspase-8 death pathways, was highly expressed in myeloid cells of COVID-19 lungs. FLIP controlled CRS by fueling a STAT3-dependent inflammatory program. Indeed, constitutive expression of a viral FLIP homolog in myeloid cells triggered a STAT3-linked, progressive, and fatal inflammatory syndrome in mice, characterized by elevated cytokine output, lymphopenia, lung injury, and multiple organ dysfunctions that mimicked human CRS. As STAT3-targeting approaches relieved inflammation, immune disorders, and organ failures in these mice, targeted intervention towards this pathway could suppress the lethal CRS inflammatory state.
Chang-Yong Choi, Mai Tram Vo, John Nicholas,
Published: 12 September 2021
Cell Death & Differentiation pp 1-14; https://doi.org/10.1038/s41418-021-00868-y

Abstract:
Mitochondria support multiple cell functions, but an accumulation of dysfunctional or excessive mitochondria is detrimental to cells. We previously demonstrated that a defect in the autophagic removal of mitochondria, termed mitophagy, leads to the acceleration of apoptosis induced by herpesvirus productive infection. However, the exact molecular mechanisms underlying activation of mitophagy and regulation of apoptosis remain poorly understood despite the identification of various mitophagy-associated proteins. Here, we report that the mitochondrial translation elongation factor Tu, a mitophagy-associated protein encoded by the TUFM gene, locates in part on the outer membrane of mitochondria (OMM) where it acts as an inhibitor of altered mitochondria-induced apoptosis through its autophagic function. Inducible depletion of TUFM potentiated caspase-8-mediated apoptosis in virus-infected cells with accumulation of altered mitochondria. In addition, TUFM depletion promoted caspase-8 activation induced by treatment with TNF-related apoptosis-inducing ligand in cancer cells, potentially via dysregulation of mitochondrial dynamics and mitophagy. Importantly, we revealed the existence of and structural requirements for autophagy-competent TUFM on the OMM; the GxxxG motif within the N-terminal mitochondrial targeting sequences of TUFM was required for self-dimerization and mitophagy. Furthermore, we found that autophagy-competent TUFM was subject to ubiquitin-proteasome-mediated degradation but stabilized upon mitophagy or autophagy activation. Moreover, overexpression of autophagy-competent TUFM could inhibit caspase-8 activation. These studies extend our knowledge of mitophagy regulation of apoptosis and could provide a novel strategic basis for targeted therapy of cancer and viral diseases.
Wenqing Gao, Yuanyuan Li, Xuehe Liu, Sen Wang, Pucheng Mei, Zijun Chen, Kewei Liu, Suhua Li, Xue-Wei Xu, Jianhua Gan, et al.
Published: 11 September 2021
Cell Death & Differentiation pp 1-12; https://doi.org/10.1038/s41418-021-00867-z

Abstract:
Gasdermin-D (GSDMD), the executioner of pyroptotic cell death when it is cleaved by inflammatory caspases, plays a crucial role in host defense and the response to danger signals. So far, there are no known mechanisms, other than cleavage, for regulating GSDMD. Here, we show that tripartite motif protein TRIM21 acts as a positive regulator of GSDMD-dependent pyroptosis. TRIM21 interacted with GSDMD via its PRY-SPRY domain, maintaining GSDMD stable expression in resting cells yet inducing the N-terminus of GSDMD (GSDMD-N) aggregation during pyroptosis. TRIM21-deficient cells displayed a reduced cell death in response to NLRP3 or NLRC4 inflammasome activation. Genetic ablation of TRIM21 in mice conferred protection from LPS-induced inflammation and dextran sulfate sodium-induced colitis. Therefore, TRIM21 plays an essential role in GSDMD-mediated pyroptosis and may be a viable target for controlling and treating inflammation-associated diseases.
Chenghuan Song, Yongfang Zhang, Wanying Huang, Jiyun Shi, Qiang Huang, Minjie Jiang, Yu Qiu, Tao Wang, Hongzhuan Chen, Hao Wang
Published: 9 September 2021
Cell Death & Differentiation pp 1-14; https://doi.org/10.1038/s41418-021-00865-1

Abstract:
Circular RNAs (circRNAs) have gained growing attention in participating in various biological processes and referring to multiply kinds of diseases. Although differentially expressed circRNA profiling in Alzheimer’s disease (AD) has been established, little is known about the precise characteristic and functions of key circRNAs with direct relevance to AD in gene expression and disease-related cognition. Herein, we screened and identified circCwc27 as a novel circRNA implicated in AD. CircCwc27 was a neuronal-enriched circRNA that abundantly expressed in the brain and significantly upregulated in AD mice and patients. Knockdown of circCwc27 markedly improved AD-related pathological traits and ameliorated cognitive dysfunctions. Mechanistically, we excluded the miRNA decoy mechanism and focused on the important function of circRNA-RNA-binding protein (RBP) interaction in AD. CircCwc27 directly bound to purine-rich element-binding protein A (Pur-α), increased retention of cytoplasmic Pur-α, and suppressed Pur-α recruitment to the promoters of a cluster of AD genes, including amyloid precursor protein (APP), dopamine receptor D1 (Drd1), protein phosphatase 1, regulatory inhibitor subunit1B (Ppp1r1b), neurotrophic tyrosine kinase, receptor, type 1 (Ntrk1), and LIM homeobox 8 (Lhx8). Downregulation of circCwc27 enhanced the affinity of Pur-α binding to these promoters, leading to altered transcription of Pur-α targets. Moreover, Pur-α overexpression largely phenocopied circCwc27 knockdown in preventing Aβ deposition and cognitive decline. Together, our findings suggest significant functional consequences of a circRNA–protein interaction, that circCwc27, by associating with the regulatory protein Pur-α, may act as a crucial player in AD pathogenesis and represent a promising AD therapeutic target with clinical translational potential.
Hengguo Zhang, Rongyao Xu, Bang Li, Zhili Xin, Ziji Ling, Weiwen Zhu, Xiang Li, Ping Zhang, Yu Fu, Jiyu Chen, et al.
Published: 8 September 2021
Cell Death & Differentiation pp 1-15; https://doi.org/10.1038/s41418-021-00858-0

Abstract:
Aged bone marrow mesenchymal stem cells (BMSCs) exhibit aberrant self-renewal and lineage specification, which contribute to imbalanced bone-fat and progressive bone loss. In addition to known master regulators of lineage commitment, it is crucial to identify pivotal switches governing the specific differentiation fate of aged BMSCs. Here, we profiled differences in epigenetic regulation between adipogenesis and osteogenesis and identified super-enhancer associated lncRNA nuclear-enriched abundant transcript 1 (NEAT1) as a key bone-fat switch in aged BMSCs. We validated that NEAT1 with high enhancer activity was transcriptionally activated by ATF2 and directed aged BMSCs to a greater propensity to differentiate toward adipocytes than osteoblasts by mediating mitochondrial function. Furthermore, we confirmed NEAT1 as a protein-binding scaffold in which phosphorylation modification of SOX2 Ser249/250 by CDK2 impaired SOX2/OCT4 complex stability and dysregulated downstream transcription networks of pluripotency maintenance. In addition, by sponging miR-27b-3p, NEAT1 upregulated BNIP3L, BMP2K, and PPARG expression to shape mitochondrial function and osteogenic/adipogenic differentiation commitment, respectively. In extracellular communication, NEAT1 promoted CSF1 secretion from aged BMSCs and then strengthened osteoclastic differentiation by extracellular vesicle delivery. Notably, Neat1 small interfering RNA delivery induced increased bone mass in aged mice and decreased fat accumulation in the bone marrow. These findings suggest that NEAT1 regulates the lineage fates of BMSCs by orchestrating mitochondrial function and pluripotency maintenance, and might be a potential therapeutic target for skeletal aging.
Published: 31 August 2021
Cell Death & Differentiation pp 1-14; https://doi.org/10.1038/s41418-021-00859-z

Abstract:
Ferroptosis, a cell death modality characterized by iron-dependent lipid peroxidation, is involved in the development of multiple pathological conditions, including ischemic tissue damage, infection, neurodegeneration, and cancer. The cellular machinery responsible for the execution of ferroptosis integrates multiple pro-survival or pro-death signals from subcellular organelles and then ‘decides’ whether to engage the lethal process or not. Here, we outline the evidence implicating different organelles (including mitochondria, lysosomes, endoplasmic reticulum, lipid droplets, peroxisomes, Golgi apparatus, and nucleus) in the ignition or avoidance of ferroptosis, while emphasizing their potential relevance for human disease and their targetability for pharmacological interventions.
Back to Top Top