Microorganisms

Journal Information
ISSN / EISSN : 2076-2607 / 2076-2607
Current Publisher: MDPI (10.3390)
Total articles ≅ 2,646
Current Coverage
SCOPUS
PUBMED
PMC
SCIE
DOAJ
Archived in
SHERPA/ROMEO
Filter:

Latest articles in this journal

Edisa Hernández, Elena Baraza, Christian Smit, Matty Berg, Joana Falcão Salles
Published: 21 October 2020
by MDPI
Microorganisms, Volume 8; doi:10.3390/microorganisms8101619

Abstract:
Elytrigia atherica is a native invasive plant species whose expansion on salt marshes is attributed to genotypic and phenotypic adaptations to non-ideal environmental conditions, forming two ecotypes. It is unknown how E. atherica–microbiome interactions are contributing to its adaptation. Here we investigated the effect of sea-water flooding frequency and associated soil (a)biotic conditions on plant traits and root-associated microbial community composition and potential functions of two E. atherica ecotypes. We observed higher endomycorrhizal colonization in high-elevation ecotypes (HE, low inundation frequency), whereas low-elevation ecotypes (LE, high inundation frequency) had higher specific leaf area. Similarly, rhizosphere and endosphere bacterial communities grouped according to ecotypes. Soil ammonium content and elevation explained rhizosphere bacterial composition. Around 60% the endosphere amplicon sequence variants (ASVs) were also found in soil and around 30% of the ASVs were ecotype-specific. The endosphere of HE-ecotype harbored more unique sequences than the LE-ecotype, the latter being abundant in halophylic bacterial species. The composition of the endosphere may explain salinity and drought tolerance in relation to the local environmental needs of each ecotype. Overall, these results suggest that E. atherica is flexible in its association with soil bacteria and ecotype-specific dissimilar, which may enhance its competitive strength in salt marshes.
Giuseppe Costantino, Maria Calasso, Fabio Minervini, Maria De Angelis
Published: 21 October 2020
by MDPI
Microorganisms, Volume 8; doi:10.3390/microorganisms8101618

Abstract:
This study aimed to set-up a biotechnological protocol for manufacturing a reduced-fat Burrata cheese using semi-skimmed milk and reduced-fat cream, in different combinations with exopolysaccharides-synthesizing bacterial starters (Streptococcus thermophilus, E1, or Lactococcus lactis subsp. lactis and Lc. lactis subsp. cremoris, E2) and carrageenan or xanthan. Eight variants of reduced-fat cheese (fat concentration 34–51% lower than traditional full-fat Burrata cheese, used as the control) were obtained using: (i) semi-skimmed milk and reduced-fat cream alone (RC) or in combination with (ii) xanthan (RCX), (iii) carrageenan (RCC), (iv) starter E1 (RCE1), (v) starter E2 (RCE2), (vi) both starters (RCE1-2), (vii) E1 and xanthan (RCXE1), or E1 and carrageenan (RCCE1). Post-acidification occurred for the RCC, RCX, and RCE2 Burrata cheeses, due to the higher number of mesophilic cocci found in these cheeses after 16 days of storage. Overall, mesophilic and thermophilic cocci, although showing cheese variant-depending dynamics, were dominant microbial groups, flanked by Pseudomonas sp. during storage. Lactobacilli, increasing during storage, represented another dominant microbial group. The panel test gave highest scores to RCE1-2 and RCXE1 cheeses, even after 16 days of storage. The 16S-targeted metagenomic analysis revealed that a core microbiota (S. thermophilus, Streptococcus lutetiensis, Lc. lactis, Lactococcus sp., Leuconostoclactis, Lactobacillusdelbrueckii, and Pseudomonas sp.), characterized the Burrata cheeses. A consumer test, based on 105 people, showed that more than 50% of consumers did not distinguish the traditional full-fat from the RCXE1 reduced-fat Burrata cheese.
Jochen Krauss, Veronika Vikuk, Carolyn Young, Markus Krischke, Martin Mueller, Katja Baerenfaller
Published: 21 October 2020
by MDPI
Microorganisms, Volume 8; doi:10.3390/microorganisms8101616

Abstract:
The authors wish to make the following correction to this paper
Carlotta Biagi, Alessandro Rocca, Giulia Poletti, Marianna Fabi, Marcello Lanari
Published: 21 October 2020
by MDPI
Microorganisms, Volume 8; doi:10.3390/microorganisms8101620

Abstract:
Acute bronchiolitis represents the leading cause of hospitalization in infants. Together with a respiratory syncytial virus, rhinovirus (RV) is one of the most common pathogens associated with bronchiolitis, and its genetic diversity (>150 types) makes the recurrence of RV infections each year quite typical. The frequency of RV infection and co-infection with other viruses and its impact on the clinical course of bronchiolitis have been studied by several authors with controversial results. Some studies demonstrate that multiple virus infections result in more severe clinical presentation and a higher risk of complications, whereas other studies suggest no influence on clinical course. Moreover, RV bronchiolitis has been reported to potentially contribute to the development of long-term sequelae, such as recurrent wheezing and asthma, in the pediatric population. In the present review, we summarize the most recent findings of the role of RV infection in children with acute bronchiolitis, its impact on subsequent asthma development, and the implication in clinical practice.
Petra Spidlova, Pavla Stojkova, Anders Sjöstedt, Jiri Stulik
Published: 21 October 2020
by MDPI
Microorganisms, Volume 8; doi:10.3390/microorganisms8101622

Abstract:
Regulation of gene transcription is the initial step in the complex process that controls gene expression within bacteria. Transcriptional control involves the joint effort of RNA polymerases and numerous other regulatory factors. Whether global or local, positive or negative, regulators play an essential role in the bacterial cell. For instance, some regulators specifically modify the transcription of virulence genes, thereby being indispensable to pathogenic bacteria. Here, we provide a comprehensive overview of important transcription factors and DNA-binding proteins described for the virulent bacterium Francisella tularensis, the causative agent of tularemia. This is an unexplored research area, and the poorly described networks of transcription factors merit additional experimental studies to help elucidate the molecular mechanisms of pathogenesis in this bacterium, and how they contribute to disease.
Ahmed Hamed, Sylvia Soldatou, M. Qader, Subha Arjunan, Kevin Miranda, Federica Casolari, Coralie Pavesi, Oluwatofunmilay Diyaolu, Bathini Thissera, Manal Eshelli, et al.
Published: 21 October 2020
by MDPI
Microorganisms, Volume 8; doi:10.3390/microorganisms8101617

Abstract:
Marine endophytic fungi from under-explored locations are a promising source for the discovery of new bioactivities. Different endophytic fungi were isolated from plants and marine organisms collected from Wadi El-Natrun saline lakes and the Red Sea near Hurghada, Egypt. The isolated strains were grown on three different media, and their ethyl acetate crude extracts were evaluated for their antimicrobial activity against a panel of pathogenic bacteria and fungi as well as their antioxidant properties. Results showed that most of the 32 fungal isolates initially obtained possessed antimicrobial and antioxidant activities. The most potent antimicrobial extracts were applied to three different cellulose containing fabrics to add new multifunctional properties such as ultraviolet protection and antimicrobial functionality. For textile safety, the toxicity profile of the selected fungal extract was evaluated on human fibroblasts. The 21 strains displaying bioactivity were identified on molecular basis and selected for chemical screening and dereplication, which was carried out by analysis of the MS/MS data using the Global Natural Products Social Molecular Networking (GNPS) platform. The obtained molecular network revealed molecular families of compounds commonly produced by fungal strains, and in combination with manual dereplication, further previously reported metabolites were identified as well as potentially new derivatives.
Dongyang Yang, Wei Xu
Published: 20 October 2020
by MDPI
Microorganisms, Volume 8; doi:10.3390/microorganisms8101612

Abstract:
Modeling and analyzing the human microbiome allows the assessment of the microbial community and its impacts on human health. The composition of the microbiome can be quantified using 16S rRNA technology into sequencing data, which are usually skewed and heavy-tailed with excess zeros. Clustering methods are useful in personalized medicine to identify subgroups for the stratification of patients. However, there is currently a lack of a standardized clustering method for complex microbiome sequencing data. We propose a clustering algorithm with a specific beta diversity measure that can address the presence–absence bias encountered in sparse count data and effectively measure the sample distances for sample stratification. Our distance measure used for clustering is derived from a parametric-based mixture model producing sample-specific distributions that are conditional on the observed operational taxonomic unit (OTU) counts and estimated mixture weights. The method can provide accurate estimates of the true zero proportions and thus construct a precise beta diversity measure. Extensive simulation studies have been conducted and suggest that the proposed method achieves substantial clustering improvement compared with some widely used distance measures when a large proportion of zeros is presented. The proposed algorithm was implemented for a human gut microbiome study on instances of Parkinson’s disease to identify distinct microbiome states with biological interpretations.
Natacha Santibañez, Matías Vega, Tatiana Pérez, Alejandro Yáñez, Roxana González-Stegmaier, Jaime Figueroa, Ricardo Enríquez, Cristian Oliver, Alex Romero
Published: 20 October 2020
by MDPI
Microorganisms, Volume 8; doi:10.3390/microorganisms8101609

Abstract:
Piscirickettsia salmonis is the causative agent of Piscirickettsiosis, an infectious disease with a high economic impact on the Chilean salmonid aquaculture industry. This bacterium produces biofilm as a potential resistance and persistence strategy against stressful environmental stimuli. However, the in vitro culture conditions that modulate biofilm formation as well as the effect of sessile bacteria on virulence and immune gene expression in host cells have not been described for P. salmonis. Therefore, this study aimed to analyze the biofilm formation by P. salmonis isolates under several NaCl and iron concentrations and to evaluate the virulence of planktonic and sessile bacteria, together with the immune gene expression induced by these bacterial conditions in an Atlantic salmon macrophage cell line. Our results showed that NaCl and Fe significantly increased biofilm production in the LF-89 type strain and EM-90-like isolates. Additionally, the planktonic EM-90 isolate and sessile LF-89 generated the highest virulence levels, associated with differential expression of il-1β, il-8, nf-κb, and iκb-α genes in SHK-1 cells. These results suggest that there is no single virulence pattern or gene expression profile induced by the planktonic or sessile condition of P. salmonis, which are dependent on each strain and bacterial condition used.
Sabrina Kousgaard, Thomas Michaelsen, H.L. Nielsen, Karina Kirk, Mads Albertsen, Ole Thorlacius-Ussing
Published: 20 October 2020
by MDPI
Microorganisms, Volume 8; doi:10.3390/microorganisms8101611

Abstract:
The objective was to determine the bacterial composition in inflamed and non-inflamed pouches for comparison to the microbiota of healthy individuals. Pouch patients and healthy individuals were included between November 2017 and June 2019 at the Department of Gastrointestinal Surgery, Aalborg University Hospital, Denmark. A faecal sample was collected from all participants for microbiota analysis using 16S rRNA amplicon sequencing. Overall, 38 participants were included in the study. Eleven patients with a normally functioning pouch, 9 patients with chronic pouchitis, 6 patients with familial adenomatous polyposis, and 12 healthy individuals. Patients with chronic pouchitis had overall lower microbial diversity and richness compared to patients with a normal pouch function (p < 0.001 and p = 0.009) and healthy individuals (p < 0.001 and p < 0.001). No significant difference was found between patients with familial adenomatous polyposis and chronic pouchitis (microbial diversity p = 0.39 and richness p = 0.78). Several taxa from the family Enterobacteriaceae, especially genus Escherichia, were associated primarily with patients with chronic pouchitis, while taxa from the genus Bacteroides primarily were associated with healthy individuals and patients with a normally functioning pouch. Finally, a microbial composition gradient could be established from healthy individuals through patients with normal pouch function and familial adenomatous polyposis to patients with chronic pouchitis.
Gisela Erf, Gilles Le Pape, Sylvie Rémy, Caroline Denesvre
Published: 20 October 2020
by MDPI
Microorganisms, Volume 8; doi:10.3390/microorganisms8101613

Abstract:
Herpesvirus of turkey (HVT) is commonly used as a vaccine to protect chickens against Marek’s disease. Following vaccination, HVT infects feathers where it can be detected in all chicken lines examined. Unlike the parental Brown line (BL), Smyth line (SL) chickens develop vitiligo, due to autoimmune destruction of melanocytes in feathers. Previous reports showed a strong inflammatory response in Smyth chickens’ feathers at vitiligo onset, that subsided once melanocytes were destroyed, and depigmentation was complete. Here, we questioned whether the local autoimmune response in the Smyth model influences HVT infection and persistence in feathers. For this, one-day-old SL and BL chickens were vaccinated with Newcastle disease (rHVT-ND). Vitiligo was scored and HVT loads in pigmented and non-pigmented growing feathers were quantified regularly over 20 weeks. Chickens of both lines showed moderate HVT loads in feathers. At the onset of active vitiligo, the HVT load was significantly higher in SL compared to BL feathers. However, no difference in HVT loads was noticed between pigmented and non-pigmented feathers from SL chickens. Therefore, surprisingly, the inflammatory response in feathers of SL chickens did not inhibit HVT infection and persistence, but on the contrary, temporarily promoted HVT infection in feathers.
Back to Top Top