AMB Express

Journal Information
ISSN / EISSN : 2191-0855 / 2191-0855
Total articles ≅ 1,423
Current Coverage
Archived in

Latest articles in this journal

, Dragana Stanley, Roy N. Kirkwood, Valeria A. Torok, Yadav S. Bajagai, Neil J. Gannon, Kate J. Plush
Published: 15 July 2021
AMB Express, Volume 11; doi:10.1186/s13568-021-01268-8

The online version contains supplementary material available at 10.1186/s13568-021-01268-8.
Yin-Hua Tang, Hong-Cheng Liu, Guang Song, Tian-Tian Wu, Ying Zhao,
Published: 15 July 2021
AMB Express, Volume 11; doi:10.1186/s13568-021-01267-9

The online version contains supplementary material available at 10.1186/s13568-021-01267-9.
Anna Maria Vettraino, , Domenico Rizzo, Alessia Lucia Pepori, Francesco Pecori, Alberto Santini
Published: 12 July 2021
AMB Express, Volume 11, pp 1-11; doi:10.1186/s13568-021-01266-w

Nuts of the sweet chestnut (Castanea sativa) are a widely appreciated traditional food in Europe. In recent years producers and consumers reported a drop of nut quality due to the presence of rot diseases caused by Gnomoniopsis smithogilvyi. Early detection of this pathogen is fundamental to the economic viability of the chestnut industry. In the present study, we developed three molecular methods based on real-time portable LAMP, visual LAMP and qPCR assays for G. smithogilvyi. The molecular assays were specific for G. smithogilvyi and did not amplify the other 11 Gnomoniopsis species and 11 other fungal species commonly associated with chestnuts. The detection limit of both the qPCR and real-time portable LAMP (P-LAMP) assays was 0.128 pg/µL, while the visual LAMP (V-LAMP) assay enabled the detection up to 0.64 pg/µL. By using these newly developed molecular tools, the pathogen was detected in symptomatic and asymptomatic nuts, but not in leaves. The reliability of these molecular methods, including the P-LAMP assay, was particularly useful in detecting G. smithogilvyi of harvested nuts in field, even in the absence of rot symptoms.
Noor Akbar, Zara Aslam, Ruqaiyyah Siddiqui, Muhammad Raza Shah,
Published: 10 July 2021
AMB Express, Volume 11, pp 1-16; doi:10.1186/s13568-021-01261-1

At present, antibiotic resistance is one of the most pressing issues in healthcare globally. The development of new medicine for clinical applications is significantly less than the emergence of multiple drug-resistant bacteria, thus modification of existing medicines is a useful avenue. Among several approaches, nanomedicine is considered of potential therapeutic value. Herein, we have synthesized Zinc oxide nanoparticles (ZnO-NPs) conjugated with clinically-approved drugs (Quercetin, Ceftriaxone, Ampicillin, Naringin and Amphotericin B) with the aim to evaluate their antibacterial activity against several Gram-positive (Methicillin resistant Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes) and Gram-negative (Escherichia coli K1, Serratia marcescens and Pseudomonas aeruginosa) bacteria. The nanoparticles and their drug conjugates were characterized using UV-visible spectrophotometry, dynamic light scattering, Fourier transform infrared spectroscopy and atomic force microscopy. Antibacterial activity was performed by dilution colony forming unit method and finally 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to determine their cytotoxic effects against human cell lines. ZnO-NPs revealed maxima surface plasmon resonance band at 374 and after conjugation with beta-cyclodextrin at 379 nm, polydispersity with size in range of 25–45 nm with pointed shaped morphology. When conjugated with ZnO-NPs, drug efficacy against MDR bacteria was enhanced significantly. In particular, Ceftriaxone- and Ampicillin-conjugated ZnO-NPs exhibited potent antibacterial effects. Conversely, ZnO-NPs and drugs conjugated NPs showed negligible cytotoxicity against human cell lines except Amphotericin B (57% host cell death) and Amphotericin B-conjugated with ZnO-NPs (37% host cell death). In conclusion, the results revealed that drugs loaded on ZnO-NPs offer a promising approach to combat increasingly resistant bacterial infections.
Published: 10 July 2021
AMB Express, Volume 11, pp 1-13; doi:10.1186/s13568-021-01264-y

Concentrations of heavy metals continue to increase in soil environments as a result of both anthropogenic activities and natural processes. Cadmium (Cd) is one of the most toxic heavy metals and poses health risks to both humans and the ecosystem. Herein, we explore the impacts of Cd on a soil–plant system composed of oilseed rapes (Brassica napus and Brassica juncea) and bacteria. The results showed that Cd accumulation within tissues of two species of oilseed rapes enhanced with increasing concentrations of Cd in soils, and Cd treatment decreased their chlorophyll content and suppressed rapeseeds growth. Meanwhile, Cd stress induced the changes of antioxidative enzymes activities of both B. napus and B. juncea. Response to Cd of bacterial community was similar in soil-two species of oilseed rapes system. The impact of Cd on the bacterial communities of soils was greater than bacterial communities of plants (phyllosphere and endophyte). The α-diversity of bacterial community in soils declined significantly under higher Cd concentration (30 mg/kg). In addition, soil bacterial communities composition and structure were altered in the presence of higher Cd concentration. Meanwhile, the bacterial communities of bulk soils were significantly correlated with Cd, while the variation of rhizosphere soils bacterial communities were markedly correlated with Cd and other environmental factors of both soils and plants. These results suggested that Cd could affect both the growth of plants and the indigenous bacterial community in soil–plant system, which might further change ecosystem functions in soils.
Junhao Kong, , Xiaoqin Su, Xuan Zheng, Chunhua Diao, Xiufang Yang, Xiaobo Zuo, Jun Xu,
Published: 9 July 2021
AMB Express, Volume 11, pp 1-16; doi:10.1186/s13568-021-01263-z

Streptococcus mutans is the primary etiological agent associated with cariogenic process. The present study aimed to investigate the antibacterial and anti-virulence activities of theaflavins (TFs) to Streptococcus mutans UA159 as well as the underlying mechanisms. The results showed that TFs were capable of suppressing the acid production, cell adherence, water-insoluble exopolysaccharides production, and biofilm formation by S. mutans UA159 with a dosage-dependent manner while without influencing the cell growth. By a genome-wide transcriptome analysis (RNA-seq), we found that TFs attenuated the biofilm formation of S. mutans UA159 by inhibiting glucosyltransferases activity and the production of glucan-binding proteins (GbpB and GbpC) instead of directly blocking the expression of genes coding for glucosyltransferases. Further, TFs inhibited the expression of genes implicated in peptidoglycan synthesis, glycolysis, lipid synthesis, two-component system, signaling peptide transport (comA), oxidative stress response, and DNA replication and repair, suggesting that TFs suppressed the virulence factors of S. mutans UA159 by affecting the signal transduction and cell envelope stability, and weakening the ability of cells on oxidative stress resistance. In addition, an upregulated expression of the genes involved in protein biosynthesis, amino acid metabolism, and transport system upon TFs treatment indicated that cells increase the protein synthesis and nutrients uptake as one self-protective mechanism to cope with stress caused by TFs. The results of this study increase our current understanding of the anti-virulence activity of TFs on S. mutans and provide clues for the use of TFs in the prevention of dental caries.
Mohd Faheem Khan,
Published: 8 July 2021
AMB Express, Volume 11, pp 1-8; doi:10.1186/s13568-021-01262-0

Cunninghamella spp. are fungi that are routinely used to model the metabolism of drugs. In this paper we demonstrate that they can be employed to generate mammalian-equivalent metabolites of the pyrethroid pesticides transfluthrin and β-cyfluthrin, both of which are fluorinated. The pesticides were incubated with grown cultures of Cunninghamella elegans, C. blakesleeana and C. echinulata and the biotransformation monitored using fluorine-19 nuclear magnetic resonance spectroscopy. Transfluthrin was initially absorbed in the biomass, but after 72 h a new fluorometabolite appeared in the supernatant; although all three species yielded this compound, it was most prominent in C. blakesleeana. In contrast β-cyfluthrin mostly remained in the fungal biomasss and only minor biotransformation was observed. Gas chromatography-mass spectrometry (GC–MS) analysis of culture supernatant extracts revealed the identity of the fluorinated metabolite of transfluthrin to be tetrafluorobenzyl alcohol, which arose from the cytochrome P450-catalysed cleavage of the ester bond in the pesticide. The other product of this hydrolysis, dichlorovinyl-2,2-dimethylcyclopropane carboxylic acid, was also detected by GC–MS and was a product of β-cyfluthrin metabolism too. Upon incubation with rat liver microsomes the same products were detected, demonstrating that the fungi can be used as models of mammalian metabolism of fluorinated pesticides.
Published: 5 July 2021
AMB Express, Volume 11, pp 1-10; doi:10.1186/s13568-021-01260-2

Biological aerated filters (BAFs) have high filtration efficiency due to their tolerance of hydraulic and organic shocks are suitable for the treatment of complex and sanitary wastewater. In this study, for the first time, natural media of date kernel from Bam city was used as the BAF reactor media, with a meshing sand filter separated by a standard metal grid from the natural filter section used at the end of the reactor. This can be considered an innovation in the media and filtration. Aeration in the related reactor with 160 cm height was performed bilaterally as up-flow and continuously by nozzles throughout the reactor media. In this work, the actual effluent of the hospital wastewater treatment plant was employed as the inflow wastewater to the reactor, and its organic and inorganic parameters were measured before and after the treatment by the BAF reactor. The backwashing process was also studied in three ways: bottom backwashing (TB), top backwashing (BB), and top and bottom backwashing (TBBS), to determine the amount of water consumed and to achieve the desired result. According to the results obtained in this study, the removal efficiencies of inorganic and microbial contaminants, amoxicillin and azithromycin were obtained as follows: BOD5: 98.48%, COD: 92.42%, $${\text{NO}}_{3}^{ - }$$ NO 3 - : 99.4%, P: 93.3%, Coliforms: 97%, Color: 42.8%, Turbidity: 95%, Sulphate: 30%, TSS: 98.9%, Amoxicillin: 20% and azithromycin: 13%. In the backwashing process, the amount of water consumed in these three TB, BB, and TBBS methods were obtained 300, 164, and 118 L, respectively, So, TBBS method was selected as the optimal method. Based on the results obtained in this study, it is concluded that the BAF process with natural date kernel has a high efficiency in removing organic and inorganic contaminants from hospital wastewater, also the concentration of most of the effluent parameters was less or in accordance with EPA standard.
Guangbin Si, Jiawei Niu, Xia Zhou, Yongsheng Xie, Zhifei Chen, Gen Li, Ruiai Chen,
Published: 1 July 2021
AMB Express, Volume 11, pp 1-10; doi:10.1186/s13568-021-01255-z

In this study, a specific and simple method based on the dual priming oligonucleotide (DPO) system was developed to simultaneously detect transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine rotavirus A (PRV-A), porcine delta coronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), associated with the major enteric RNA viruses in pigs. The DPO system-based multiplex RT-PCR method simplified the primer design and did not require optimization of the annealing temperature. Specificity analysis revealed that the method could specifically detect TGEV, PEDV, PRV-A, PDCoV, and SADS-CoV without any cross-amplification of other circulating swine viruses. The limit of detection of the method was as low as 103–104 copies/μL plasmid of each virus. The method also had good repeatability, and obvious results were seen in three repeat experiments with an interval of 45 days. This optimized multiplex RT-PCR method was used to evaluate 181 clinical swine samples that were collected from four provinces of China between September 2016 and August 2018. The results showed that the positive detection rates of PEDV, PDCoV, SADS-CoV, PRV-A, and TGEV were 30.94% (56/181), 17.67% (32/181), 11.6% (21/181), 9.39% (17/181), and 0.55% (1/181), respectively. Mixed infection of two or more viruses was also common. The DPO system-based multiplex RT-PCR could be a useful tool for detecting enteric virus infections. This method has the advantages of easy operation, low cost, high detection efficiency, and short running time for early diagnosis in clinical cases.
Published: 30 June 2021
AMB Express, Volume 11, pp 1-11; doi:10.1186/s13568-021-01259-9

The experiment was conducted to compare the growth performance, rumen fermentation, nutrient digestibility, and ruminal and fecal bacterial community between yaks and cattle-yaks. Ten male yaks (36-month-old) were used as the yak (YAK) group and 10 male cattle-yaks with similar age were selected as the cattle-yak (CAY) group. All the animals were fed same ration and the experiment lasted for 60 days. The results showed that the average daily gain and dry matter intake of CAY group were higher (P < 0.05) than those of YAK group. The ruminal concentrations of total volatile fatty acids, acetate, and butyrate were higher (P < 0.05) in CAY group than those in YAK group. However, the neutral detergent fiber and acid detergent fiber digestibility exhibited an opposite between two groups. In the rumen, the relative abundances of Prevotella 1 and Prevotellaceae UCG-001 were higher (P < 0.05) and Succiniclasticum and Butyrivibrio 2 were lower (P < 0.05) in YAK group compared to CAY group. In the feces, the unclassified Lachnospiraceae, Lachnospiraceae NK4A136 group, and Lachnospiraceae AC2044 group were significantly enriched (P < 0.05) in YAK group, whereas the Ruminococcaceae UCG-010, Ruminococcaceae UCG-013, and Succiniclasticum were significantly enriched (P < 0.05) in CAY group. Overall, under the same diet, the yaks have higher fiber utilization and cattle-yaks have higher energy utilization.
Back to Top Top