npj Quantum Information

Journal Information
EISSN : 2056-6387
Current Publisher: Springer Science and Business Media LLC (10.1038)
Former Publisher:
Total articles ≅ 466
Current Coverage
Archived in

Latest articles in this journal

Hang Liu, Zhen-Qiang Yin, Rong Wang, Ze-Hao Wang, Shuang Wang, Wei Chen, Guang-Can Guo, Zheng-Fu Han
npj Quantum Information, Volume 7, pp 1-6; doi:10.1038/s41534-021-00428-9

Unlike traditional communication, quantum key distribution (QKD) can reach unconditional security and thus attracts intensive studies. Among all existing QKD protocols, round-robin-differential-phase-shift (RRDPS) protocol can be running without monitoring signal disturbance, which significantly simplifies its flow and improves its tolerance of error rate. Although several security proofs of RRDPS have been given, a tight finite-key analysis with a practical phase-randomized source is still missing. In this paper, we propose an improved security proof of RRDPS against the most general coherent attack based on the entropic uncertainty relation. What’s more, with the help of Azuma’s inequality, our proof can tackle finite-key effects primely. The proposed finite-key analysis keeps the advantages of phase randomization source and indicates experimentally acceptable numbers of pulses are sufficient to approach the asymptotical bound closely. The results shed light on practical QKD without monitoring signal disturbance.
Takeru Kusumoto, , Keisuke Fujii, Masahiro Kitagawa, Makoto Negoro
npj Quantum Information, Volume 7, pp 1-7; doi:10.1038/s41534-021-00423-0

The kernel trick allows us to employ high-dimensional feature space for a machine learning task without explicitly storing features. Recently, the idea of utilizing quantum systems for computing kernel functions using interference has been demonstrated experimentally. However, the dimension of feature spaces in those experiments have been smaller than the number of data, which makes them lose their computational advantage over explicit method. Here we show the first experimental demonstration of a quantum kernel machine that achieves a scheme where the dimension of feature space greatly exceeds the number of data using 1H nuclear spins in solid. The use of NMR allows us to obtain the kernel values with single-shot experiment. We employ engineered dynamics correlating 25 spins which is equivalent to using a feature space with a dimension over 1015. This work presents a quantum machine learning using one of the largest quantum systems to date.
, , M. Schiavon, A. Stanco, C. Agnesi, A. Santamato, M. Zahidy, A. Scriminich, G. Foletto, G. Contestabile, et al.
npj Quantum Information, Volume 7, pp 1-8; doi:10.1038/s41534-021-00421-2

The future envisaged global-scale quantum-communication network will comprise various nodes interconnected via optical fibers or free-space channels, depending on the link distance. The free-space segment of such a network should guarantee certain key requirements, such as daytime operation and the compatibility with the complementary telecom-based fiber infrastructure. In addition, space-to-ground links will require the capability of designing light and compact quantum devices to be placed in orbit. For these reasons, investigating available solutions matching all the above requirements is still necessary. Here we present a full prototype for daylight quantum key distribution at 1550 nm exploiting an integrated silicon-photonics chip as state encoder. We tested our prototype in the urban area of Padua (Italy) over a 145 m-long free-space link, obtaining a quantum bit error rate around 0.5% and an averaged secret key rate of 30 kbps during a whole sunny day (from 11:00 to 20:00). The developed chip represents a cost-effective solution for portable free-space transmitters and a promising resource to design quantum optical payloads for future satellite missions.
T. J. Sturges, T. McDermott, A. Buraczewski, W. R. Clements, J. J. Renema, S. W. Nam, T. Gerrits, A. Lita, W. S. Kolthammer, A. Eckstein, et al.
npj Quantum Information, Volume 7, pp 1-8; doi:10.1038/s41534-021-00427-w

Quantum simulations are becoming an essential tool for studying complex phenomena, e.g. quantum topology, quantum information transfer and relativistic wave equations, beyond the limitations of analytical computations and experimental observations. To date, the primary resources used in proof-of-principle experiments are collections of qubits, coherent states or multiple single-particle Fock states. Here we show a quantum simulation performed using genuine higher-order Fock states, with two or more indistinguishable particles occupying the same bosonic mode. This was implemented by interfering pairs of Fock states with up to five photons on an interferometer, and measuring the output states with photon-number-resolving detectors. Already this resource-efficient demonstration reveals topological matter, simulates non-linear systems and elucidates a perfect quantum transfer mechanism which can be used to transport Majorana fermions.
John M. Martinis
npj Quantum Information, Volume 7, pp 1-9; doi:10.1038/s41534-021-00431-0

Error-corrected quantum computers can only work if errors are small and uncorrelated. Here, I show how cosmic rays or stray background radiation affects superconducting qubits by modeling the phonon to electron/quasiparticle down-conversion physics. For present designs, the model predicts about 57% of the radiation energy breaks Cooper pairs into quasiparticles, which then vigorously suppress the qubit energy relaxation time (T 1 ~ 600 ns) over a large area (cm) and for a long time (ms). Such large and correlated decay kills error correction. Using this quantitative model, I show how this energy can be channeled away from the qubit so that this error mechanism can be reduced by many orders of magnitude. I also comment on how this affects other solid-state qubits.
Sebastian Zaiser, Chun Tung Cheung, Sen Yang, , Sadegh Raeisi, Jörg Wrachtrup
npj Quantum Information, Volume 7, pp 1-7; doi:10.1038/s41534-021-00408-z

The achievable bounds of cooling quantum systems, and the possibility to violate them is not well-explored experimentally. For example, among the common methods to enhance spin polarization (cooling), one utilizes the low temperature and high-magnetic field condition or employs a resonant exchange with highly polarized spins. The achievable polarization, in such cases, is bounded either by Boltzmann distribution or by energy conservation. Heat-bath algorithmic cooling schemes (HBAC), on the other hand, have shown the possibility to surpass the physical limit set by the energy conservation and achieve a higher saturation limit in spin cooling. Despite, the huge theoretical progress, and few principle demonstrations, neither the existence of the limit nor its application in cooling quantum systems towards the maximum achievable limit have been experimentally verified. Here, we show the experimental saturation of the HBAC limit for single nuclear spins, beyond any available polarization in solid-state spin system, the Nitrogen-Vacancy centers in diamond. We benchmark the performance of our experiment over a range of variable reset polarizations (bath temperatures), and discuss the role of quantum coherence in HBAC.
Johannes Jakob Meyer, , Jens Eisert
npj Quantum Information, Volume 7, pp 1-5; doi:10.1038/s41534-021-00425-y

With an ever-expanding ecosystem of noisy and intermediate-scale quantum devices, exploring their possible applications is a rapidly growing field of quantum information science. In this work, we demonstrate that variational quantum algorithms feasible on such devices address a challenge central to the field of quantum metrology: The identification of near-optimal probes and measurement operators for noisy multi-parameter estimation problems. We first introduce a general framework that allows for sequential updates of variational parameters to improve probe states and measurements and is widely applicable to both discrete and continuous-variable settings. We then demonstrate the practical functioning of the approach through numerical simulations, showcasing how tailored probes and measurements improve over standard methods in the noisy regime. Along the way, we prove the validity of a general parameter-shift rule for noisy evolutions, expected to be of general interest in variational quantum algorithms. In our approach, we advocate the mindset of quantum-aided design, exploiting quantum technology to learn close to optimal, experimentally feasible quantum metrology protocols.
, John Rarity
npj Quantum Information, Volume 7, pp 1-7; doi:10.1038/s41534-021-00411-4

We give a protocol for ghost imaging in a way that is always counterfactual—while imaging an object, no light interacts with that object. This extends the idea of counterfactuality beyond communication, showing how this interesting phenomenon can be leveraged for metrology. Given, in the infinite limit, no photons ever go to the imaged object, it presents a method of imaging even the most light-sensitive of objects without damaging them. Even when not in the infinite limit, it still provides a many-fold improvement in visibility and signal-to-noise ratio over previous protocols, with over an order of magnitude reduction in absorbed intensity.
npj Quantum Information, Volume 7, pp 1-7; doi:10.1038/s41534-021-00429-8

Coherent errors, which arise from collective couplings, are a dominant form of noise in many realistic quantum systems, and are more damaging than oft considered stochastic errors. Here, we propose integrating stabilizer codes with constant-excitation codes by code concatenation. Namely, by concatenating an [[n, k, d]] stabilizer outer code with dual-rail inner codes, we obtain a [[2n, k, d]] constant-excitation code immune from coherent phase errors and also equivalent to a Pauli-rotated stabilizer code. When the stabilizer outer code is fault-tolerant, the constant-excitation code has a positive fault-tolerant threshold against stochastic errors. Setting the outer code as a four-qubit amplitude damping code yields an eight-qubit constant-excitation code that corrects a single amplitude damping error, and we analyze this code’s potential as a quantum memory.
Dong-Gil Im, Chung-Hyun Lee, Yosep Kim, Hyunchul Nha, M. S. Kim, Seung-Woo Lee, Yoon-Ho Kim
npj Quantum Information, Volume 7, pp 1-7; doi:10.1038/s41534-021-00426-x

Quantum teleportation exemplifies how the transmission of quantum information starkly differs from that of classical information and serves as a key protocol for quantum communication and quantum computing. While an ideal teleportation protocol requires noiseless quantum channels to share a pure maximally entangled state, the reality is that shared entanglement is often severely degraded due to various decoherence mechanisms. Although the quantum noise induced by the decoherence is indeed a major obstacle to realizing a near-term quantum network or processor with a limited number of qubits, the methodologies considered thus far to address this issue are resource-intensive. Here, we demonstrate a protocol that allows optimal quantum teleportation via noisy quantum channels without additional qubit resources. By analyzing teleportation in the framework of generalized quantum measurement, we optimize the teleportation protocol for noisy quantum channels. In particular, we experimentally demonstrate that our protocol enables to teleport an unknown qubit even via a single copy of an entangled state under strong decoherence that would otherwise preclude any quantum operation. Our work provides a useful methodology for practically coping with decoherence with a limited number of qubits and paves the way for realizing noisy intermediate-scale quantum computing and quantum communication.
Back to Top Top